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Abstract. This paper discusses the evaluation of quasi-static equilibrium solutions for in-
flatable space membrane structures, such as balloons. A flat linearly interpolated triangu-
lar element is used for simulations, with a Mooney-Rivlin hyper-elastic material model, with
variable constitutive constants. A compressible medium is used to introduce a one-parametric
over-pressure loading within the membrane. Complex path-following procedures are used to
find generalized equilibrium paths, with different parameterizations. Numerical examples show
that the methods developed can give information on the stability of the structures, but that the
medium and means for introducing the internal pressure is of importance for the interpretation
of stability.
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1 INTRODUCTION

A large variety of thin three dimensional inflatable structures, i.e., balloons, are used in
several engineering and medical contexts, e.g., [1, 2, 3]. These structures often show large
deformations when subjected to distributed pressures. The bending stiffness can often be ne-
glected and only a membrane state considered. Several analytical and numerical treatments for
more or less general situations are available in literature, [4, 5, 6, 7, 8]. The treatment of these
structures also leads to several accompanying aspects, such as the load descriptions, [9], contact
formulations, [10], and instability aspects, [11, 12, 13].

Simulations of very thin membranes are often based on shell models, but these show impor-
tant drawbacks in situations where the bending stiffness almost vanishes. The main problems
lie in the treatment of large rotations, the aspect ratios of the elements, and the stiffness dif-
ferences in membrane and bending action. As one remedy, rotation-free shell elements have
been suggested by many researchers, [14, 15, 16, and others]. The main efforts have been re-
lated to non-local evaluation of the element curvatures, and to degenerated solid elements, [17].
Advantages and disadvantages of rotation-free shell elements are described in [18, 19].

For the balloon-like structures considered in the present work, an assumption has been that
simulations of the inflation process can be based purely on the membrane behavior, disregard-
ing the bending stiffness. This assumption will remove the numerical problems associated with
shell formulations when thickness tends to zero, and also leads to efficient simulations. Some
space membrane elements have been developed in literature for special applications. An inter-
esting recent development is discussed by Pargana et al., [20], where an initially flat, quadrat-
ically interpolated 6-node membrane element is developed for ‘Tensioned Fabric’ structures.
The element uses a total Lagrangian approach, and Green strains, but considers only cases
where strains can be assumed as small.

The problems considered here, i.e., the inflation of balloon-like structures, are both geomet-
rically non-linear due to finite deformations and materially non-linear through the constitutive
relationship. A co-rotational (‘CR’) finite element form was developed in [21], where the local
element is purely in an in-plane state. It was concluded that the CR formulation can be relevant
and efficient for problems where the local behavior is sufficiently well described by an elas-
tic formulation, but that the formulation became inefficient when hyper-elastic material models
were introduced. In the present work, a hyper-elastic flat triangular membrane element based
on a total Lagrangian (‘TL’) formulation was used for the analysis of thin space membrane
structures, allowing different hyper-elastic forms.

The restrictions of the current formulation are primarily that all elements connecting to a
node can not be co-planar at any stage, and that only surface-normal pressure loads are present.
For physical relevance, the elements in the mesh must also be under tensile states at any solution.
We also only consider quasi-static equilibrium situations, hypothesizing that he dynamics of a
real inflation process is not primarily related to the inertia properties of the structure, but to
the loading situations. The quasi-static assumption in this work means that any combination of
pressure and volume can be immediately introduced, without dynamic or thermal effects.

The element formulation was tested for the structural class considered, noting that the present
problems demand sophisticated path-following algorithms, with several aspects of instability
detection and classification included. In particular, the generalized path-following in a parame-
ter space with not just a single load factor was shown to be useful for the analyses.
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2 COMPUTATIONAL MODELING

The basic quasi-static structural equilibrium situation is based on a one-parametric pressure
loading. The formulation is thereby aimed at seeking a set of combinations (u, ψ) satisfying:

F (u, ψ) ≡ f(u)− p(ψ,u) = 0 (1)

where f , p, and u are vectors containing internal forces, external forces, and displacements,
respectively, in the degrees of freedom of the structure considered. Also, ψ is a scalar value rep-
resenting the over-pressure in the transversal direction. Element displacements ug are extracted
from u based on a topology defined, while f and p are assembled from element contributions
f g and pg, respectively. The super-index g indicates that the element components are measured
in the common degrees of freedom of the structure, which in the present case are translations in
the three global axis directions.

The differential relation corresponding to Eq. (1) is:

δF =
∂ f

∂ u
δu− ∂ p

∂ u
δu− ∂ p

∂ ψ
δψ = (K−Kp) δu− δψ

∂ p

∂ ψ
(2)

which gives a tangential stiffness matrix containing a load-dependent term, since the pressure
load is acting on the deformed geometry.

2.1 Element formulation

The element used for large deflection space membrane simulations is based on the lin-
early interpolated constant strain triangle, ‘CST’, for in-plane analysis. When seen in a three-
dimensional context, the nodes (i, j, k) are defined by initial coordinates xg

I , (I = i, j, k). The
global displacement components are similarly ug

I . The element is assumed to be flat, and the
initial nodal positions define a plane in space, with three initial element coordinate axes in an
orthogonal matrix R0, the third axis being an outwards normal direction to the flat element.
Using the initial position of node i as the origin for a local coordinate system, the initial shape
of the element is defined by local coordinates:

xe
I = RT

0 (xg
I − xg

i ) (I = i, j, k) (3)

where the third coordinate is zero for the three nodes, by construction. Relative to this initial
element coordinate system, the displacements are:

ue
I = RT

0 ug
I (I = i, j, k) (4)

The displacements of a point p within the element is interpolated as:

ue
p =

∑
I

NI(x
e
p,1, x

e
p,2)u

e
I (5)

with common shape functions for the CST element, representing a linear interpolation of all
three local displacement components related to the initial element plane.

Corresponding to the element displacements ue
I , element internal forces f e

I are evaluated,
which are then transformed into internal force contributions in global coordinate directions as:

f g
I = R0 f

e
I (I = i, j, k) (6)
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The evaluation of the internal forces in the element is assuming an incompressible isotropic
hyper-elastic material model. Strains are described by the the right Cauchy-Green deformation
tensor:

C =

 C11 C12 0
C21 C22 0
0 0 C33

 (7)

where the incompressibility condition J = det(C) = 1 relates C33 to the other components,
and where initial element coordinates are used. Stresses are represented by the second Piola-
Kirchhoff stress tensor:

S =

 S11 S12 0
S21 S22 0
0 0 S33

 (8)

where the assumption of a local plane-stress situation demands S33 = 0.
Introducing the constraints above, a convenient form can be derived based on considering the

four components C11, C22, C12 and C21, and the corresponding stress components. It is noted
that the strains are non-linearly dependent on nodal displacements but constant over the element
area. An incremental strain operator B = B(xe

I ,u
e
I) gives variations in strain components from

variations in element displacements.
The hyper-elastic model is characterized by a strain-energy relation, [22, 23]:

S = −ρC−1 + 2
∂ W

∂C
(9)

where W is a strain energy function, and ρ a hydro-static pressure, which can also be seen as a
Lagrange multiplier enforcing the strain and stress constraints above. With the incompressibility
assumption, I3(C) = 1, the strain energy function is written:

W =W (I1(C), I2(C)) (10)

with the first and second invariants of the tensor C. A Mooney-Rivlin form, [22] defines the
stress-strain relation from two constitutive constants:

W = c1(I1(C)− 3) + c2(I2(C)− 3) (11)

The above expressions were used to describe the relation between the stress and strain com-
ponents considered:

S = S(C, c1, c2) (12)

and also the differential relation between increments in stress and strain. These give the internal
force vector and the tangential stiffness matrix for the element at a current state of displacement;
as all quantities are constant within each element, the required integration is simple.

A neo-Hookean form is a further specialization of the above expression, where a single
constitutive constant is c1 = µ/2, half the shear modulus. A general demand on the constants
is that the sum c1 + c2 = µ/2, [22]. Different relations between the two constitutive constants
were tested for the numerical examples below, and are in the examples represented as a ratio
n1/n2, where:

c1 =
n1

n1 + n2

µ

2
(13)

c2 =
n2

n1 + n2

µ

2
(14)
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2.2 Loading assumptions

A membrane can be pressurized in several different ways. One important aspect is the
medium introducing the pressure on the membrane. Typically, a gas is compressible and can be
assumed to have zero density, whereas a liquid is incompressible and has a density. In particu-
lar for gases, the mechanism for introducing the medium into the membrane is of importance,
where it is assumed that either a specified pressure can be introduced independent of the result-
ing volume, or a specific amount of gas is introduced leading to a balance between pressure and
volume.

In the present work, it has been assumed that the pressure is introduced by a compressible
gas, with zero density. This means that a one-parameter description of the over-pressure can be
used, and this pressure is acting in a normal, outwards direction on all surfaces, with only posi-
tive over-pressures considered. The over-pressure ψ is seen as related to a constant surrounding
pressure of the membrane ψ0. The total pressure within the membrane is thereby Ψ = ψ0 + ψ.

The local displacement-dependent loading due to normal uniform over-pressure is evaluated
as:

pe
I = ψ

A

3
(0, 0, 1)T , (I = i, j, k) (15)

where ψ is the current surface pressure, and A = A(xe
I ,u

e
I) is the current element area. The

element contribution is transformed to global degrees of freedom and assembled to the structural
pressure load vector.

The stiffness term Kp in Eq. (2) is related to the displacement-dependent pressure loads.
This aspect is extensively discussed in [11], and must be considered when simulating large
deformations of a pressure-loaded structure. Assembled from element contributions Kg

p, rather
simple geometric consideration show that for the present formulation:

Kg
p = R0

 kp,ii kp,ij kp,ik

kp,ji kp,jj kp,jk

kp,ki kp,kj kp,kk

RT
0 (16)

where the submatrices are formulated in displaced local coordinates:

kp,IJ =
ψ

6

 0 0 yd(J−1) − yd(J+1)

0 0 xd(J+1) − xd(J−1)

yd(J+1) − yd(J−1) xd(J−1) − xd(J+1) 0

 (17)

The indices i, j, k are thereby introduced cyclically, and the coordinates are

xdI =

 xdI
ydI
zdI

 = xe
I + ue

I (18)

The amount of gas contained by the membrane can be evaluated from the equation for an
ideal gas, stated as:

ΨV = NT (19)

where Ψ is the total gas pressure, V the volume enclosed by the membrane, N an amount
measure and T the absolute temperature. This expression can be used in different ways in the
evaluation of membrane behavior, as indicated by the examples below.
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2.3 Quasi-static equilibrium solutions

The pressurized membranes often show complicated non-linear responses to loading, with
different instability states being important aspects. The solution of quasi-static equilibrium
states thereby demands rather sophisticated solution algorithms. The present work has utilized
one-dimensional path-following techniques based on variable parameterizations along the so-
lution path, changing both the parameterizing component and the step length as functions of
the path traversed, [24, 25]. The isolation of critical instability states is based on sequential
bisections along the parameterized path, [26]. The response variables can also be seen as func-
tions of, e.g., geometric or material parameters in the model, [27], where augmenting equations
specify a subset of equilibrium states under variation of the additional parameters. In particular,
the dependence of the critical states on the added parameters can be evaluated by methods from
[28]. An interesting possibility, not yet utilized, is also to to evaluate two-dimensional solution
surfaces, where parametric combinations leading to certain response aspects can be evaluated
and visualized, [29]. The general setting is thereby:

G(u,λ) ≡
(

f(u)− p(λ1,u)
g(u,λ)

)
= 0 (20)

where Eq. (1) gives the equilibrium equations between the displacements and the load-describing
variable λ1 = ψ, and the Ng augmenting equations g(u,λ) define some extra relations for the
interesting subset of equilibrium solutions, under the variations of the variables λ1, . . . , λNλ

.
The dimension of the solutions to the augmented system is then Nλ −Ng.

3 NUMERICAL EXAMPLES

We have performed some test with a spherical membrane, and a balloon-shaped membrane,
both subjected to internal over-pressures. In both cases, we used an initial thickness of 0.1mm,
and a material with shear modulus µ = 0.4225MPa.

3.1 A sphere

A sphere with radius r = 10mm under internal pressure was considered, [4, 22]. Boundary
conditions were chosen to allow uniform expansion, cf Fig. 1. A mesh of the whole sphere
with 5120 triangular elements was considered, based on successive subdivisions of a 20-corner
icosahedron mesh; all nodes were moved radially to be placed on the sphere. The example was
used to show the properties of the hyper-elastic formulation, with different ratios between c1
and c2 coefficients in the Mooney-Rivlin constitutive relation Eq. (11), described by (n1, n2) as
in Eqs. (13)–(14).

The results from hyper-elastic models are given in Fig. 2. Re-drawn with the radial expansion
uD expressed as a stretch, the results visually agree with the analytical results given in [22], for
c1 = 0.5µ, c2 = 0 (‘neo-Hookean’) and for c1 = 7

16
µ, c2 = 1

16
µ (‘Mooney-Rivlin’). No

instabilities were noted in addition to the turning points with respect to pressure, [4].
Solutions with a sufficiently low c2 constant show a maximum pressure state for small expan-

sions. Even for very small non-zero values of c2, there will also be a (local) minimum pressure
state, but the pressures will eventually increase with radial expansion; this was verified for a
case with (n1/n2) = 1023/1, where the minimum limit pressure was found as p = 0.528 kPa at
a radial expansion uD ≈ 310mm. The pair of limit pressure states disappear between calculated
solutions for n1/n2 = 5/1 and n1/n2 = 4/1.
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Figure 1: Sphere under internal pressure. The figures shows an eighty element model, and sample points, but
calculations were performed with an 5120 element mesh. Supports were given as: uA = vA = vB = uC = vC =
wC = 0, with (u, v, w) the translations in global (x, y, z) directions.
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Figure 2: Sphere under internal pressure. Radial expansion and internal over-pressure for different parameters in a
Mooney-Rivlin model. Curve notation n1/n2 according to Eqs. (13)–(14).

3.2 A long balloon

Figure 3 shows a model with 672 triangular elements of an inflated balloon which is com-
pletely fixed in one end, x = 0, constrained to only axial movement of the farthest end (A), and
subjected to a uniform internal pressure ψ, assuming a surrounding pressure of ψ0 = 100 kPa.
The initial geometry of the balloon was composed of a L = 95mm cylinder with radius
r = 10mm and an end half-sphere. Sample points for deflections are marked in Fig. 3. Quasi-
static equilibrium simulations were performed for refined models with 2688 and 10752 ele-
ments.

The pressure-expansion sequence was followed by a displacement-based iteration sequence
for a 10752 element mesh, and different hyper-elastic material model, described by the ratio
n1/n2 in Eqs. (13)–(14). The result is represented by the radial expansion vD related to the
internal over-pressure ψ in Fig. 4. A set of longitudinal sections through the inflated balloon
are shown in Fig. 5. The profiles show the section of the balloon at z = 0, but the section y = 0
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Figure 3: Inflation of balloon, 672 element model with sample points. All nodes at x = 0 were considered fully
fixed in the simulations, the node at A could only move axially; all other nodes were completely free. Calculations
were made with refined models (2688, 10752 elements), obtained from successive divisions of the figure elements
into four triangles.
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Figure 4: Inflation of balloon. Hyper-elastic material models, and 10752 element mesh. Quasi-static equilibrium
paths, represented by internal over-pressure ψ and radial expansion at sample point D, vD, Fig. 3. Curve notation
n1/n2 according to Eqs. (13)–(14).

gives completely identical figures, as all solutions are rotationally symmetric. The sections were
chosen when the radial expansion vD ≈ 300mm for the different material models; the position
of sample point D is marked by a circle in the figures. It is noted that these solutions refer to
significantly different pressures ψ, cf. Fig. 4.

The dots on the sections in Fig. 5 show the displaced positions of the nodes on the symmetry
line, which were close to evenly distributed initially. It is obvious that the neo-Hookean model
n1/n2 = 1/0 will give a considerably different behavior than the other models, as it localizes the
strains to the central parts of the balloon. This is an effect of the softening behavior with strain,
whereas a non-zero c2 coefficient will give a final stiffening of the material. This localization of
the straining means that the mesh must be finer for the neo-Hookean material, in order to avoid
behavior artifacts from the discretization. The 2688 element model was shown to be essentially
free from such artifacts even for the neo-Hookean case.

Several of the material models showed a limit state with respect to internal over-pressure: a
maximum load point, which was isolated to high accuracy. This limit state existed for all tested
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Figure 5: Inflation of balloon. Hyper-elastic material models, and 10752 element mesh. Sections through inflated
balloon, for solutions with vD ≈ 300mm, for different parameters in a Mooney-Rivlin model. Curve notation
n1/n2 according to Eqs. (13)–(14).
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Figure 6: Inflation of balloon. Hyper-elastic material models, and 10752 element mesh. Radial expansion vD
related to the amount of gas injected, represented by product (ψ0+ψ)V (u), for different parameters in a Mooney-
Rivlin model. Curve notation n1/n2 according to Eqs. (13)–(14). Surrounding pressure ψ0 = 100 kPa.

material models with ratios n1/n2 ≥ 5, whereas no (local) maximum pressure state was found
for n1/n2 ≤ 4. Except for the neo-Hookean model, the maximum pressure state corresponded
to a (local) minimum before the pressure started to increase monotonically with expansion. A
loading situation where the pressure can be regulated would thus show a dynamic snap-through
behavior in the inflation process for such materials.

The models showed bifurcation states for very large expansions. For the n1/n2 = 7/1 model
with 10752 elements, this occurred at an overpressure ψ = 43.9 kPa, and a radial expansion
vD = 2139mm with a mode corresponding to a torsion of the balloon. The same bifurcation
was found for ψ = 59.0 kPa, vD = 1435mm when n1/n2 = 3/1. It is noted that some possible
instability modes are restrained by the adopted kinematic constraints.

The results in Fig. 4 are represented as radial expansion vD and product (ψ0 + ψ)V (u) in
Fig. 6, for the assumed ψ0 = 100 kPa, and the volume V calculated from the current displace-
ments u. For all material models, the expansion is monotonically increasing together with the
injected amount of gas, so no instability would occur in the process for a loading situation where
the inflow of gas is regulated. It is noted, however, that the evaluation of the injected amount of
gas is significantly dependent on the assumed surrounding pressure.

As an alternative to the above solution, the solution of the inflation problem can also be
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Figure 7: Inflation of balloon. Hyper-elastic material models, and 2688 element mesh. Solutions parameterized
by amount measure, for different parameters in a Mooney-Rivlin model. Radial expansion vD and internal over-
pressure ψ, Fig. 3. Curve notation n1/n2 according to Eqs. (13)–(14). Surrounding pressure ψ0 = 100 kPa.

parameterized by the amount of gas injected. Assuming isothermal conditions, a second control
variable λ2 = Nt was used in addition to the over-pressure λ1 = ψ, together with an augmenting
equation:

g(u,λ) = (ψ0 + λ1)V (u)− λ2 = 0 (21)

Driving the path-following with the λ2 variable gave the results presented in Fig. 7, for differ-
ent constitutive parameters c1, c2. The solutions are identical to the ones obtained without the
amount parameter.

The augmenting equation method was used to study the behavior of an inflated balloon under
change of temperature. The problem was set up with three control variables λT = (ψ,N, T ),
with two augmenting equations beside the equilibrium equations:

g(u,λ) =

(
(ψ0 + λ1)V (u)− λ2 (λ3 + 273)

λ2 −N0

)
= 0 (22)

whereN0 is a constant, defined in each material model case from the primary solutions in Fig. 4
for an over-pressure of ψ = 3.0 kPa, and assuming that this situation was first achieved at
T = 20◦C, whereafter the balloon was sealed. The solutions obtained for variable temperature
are shown in Fig. 8

4 CONCLUDING REMARKS

In this paper, a faceted triangular membrane space element is used for the analysis of pressur-
ized membrane structures, using a class of hyper-elastic, Mooney-Rivlin, material models. The
loading was seen as a uniform over-pressure, representing a gas loading. Quasi-static conditions
were assumed, neglecting dynamic effects primarily coming from the flow velocities within the
volume. It is emphasized by examples that the pressurizing mechanism is of importance for the
response, even when the analysis is restricted to gas as the pressurizing medium. Two simple
‘balloon-type’ membranes show that limit points can occur when the pressure variable is seen
as the parameter for the inflation, whereas these limit states can disappear when the injected gas
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Figure 8: Inflation of balloon. Hyper-elastic material models, and 2688 element mesh. Solutions parameterized by
temperature, for different parameters in a Mooney-Rivlin model. Radial expansion vD and internal over-pressure
ψ, Fig. 3. Curve notation n1/n2 according to Eqs. (13)–(14). Surrounding pressure ψ0 = 100 kPa.

volume is seen as the parameter. This difference thus has significance for the dynamic response
of the membrane.

The results from the numerical examples indicate that the proposed formulation can be used
for analysis of space membrane problems showing large displacements and large strains. The
present study has been limited to uniform internal over-pressures, but other media or methods
for introduction of the pressure, as well as partially filled structures, are interesting continuations
of the project reported. A requirement for the model to be useful in the analysis of realistic
structures is the development and verification of other non-linear material models.

A sophisticated path-following algorithm is needed for following the complex generalized
equilibrium paths, which are used for the simulations. It is believed that the two-dimensional
equilibrium surfaces discussed in [29] can be used for an improved understanding of membrane
behavior under different classes of loadings.
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