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Abstract. Developing nonlinear structural models with high accuracy and affordable compu-
ting cost is a challenging issue and one of the pressing needs in earthquake engineering. The
paper presents a quadrature beam model for distributed plasticity seismic analysis of steel
frames. It is based on the newly developed weak-form quadrature element method, in which
the variation principle and the differential quadrature analog are combined. One quadrature
beam element can simulate a beam-column member with varying cross-section and non-
uniformly distributed loads. The formulations of tangent stiffness matrix and consistent mass
matrix are derived. The section constitutive relation of a beam-column member is directly de-
rived using fiber model and material properties. Inelastic time history analysis of the LA 3-
story moment-resisting steel frame is conducted to demonstrate the accuracy and efficiency of
the quadrature beam model. For verification and comparison, the frame is also analyzed us-
ing ANSYS with its BEAM188 element and OpenSEES with the force-based beam element. It
is shown that: a) by increasing the number of integration points in one element, results of the
guadrature beam model are in excellent agreement with those computed by the displacement-
based model in ANSYS; b) degrees of the freedom and the CPU time consumption of the
guadrature beam model are much lower than those of the displacement-based model; c) the
convergence rate of the quadrature beam model is comparable to that of the force-based
model, and the time consumption of the quadrature beam model is slightly higher. In contrast
to the only available lumped mass matrix of the force-based model, it is easy to acquire con-
sistent mass matrix in the quadrature beam model for inelastic dynamic analysis, highlighting
its great potentials in seismic analysis of frames.
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1 INTRODUCTION

Developing nonlinear structural models with high accuracy and affordable computing cost is a
challenging issue and one of the pressing needs in earthquake engineering [1]. For inelastic
seismic analysis of frame structures, the lumped plasticity model [2] enjoys simplicity and
computational efficiency but it cannot simulate the spread of plasticity and its empirical des-
ignation of hinge positions and spring properties sometimes leads to unreliable results. The
distributed plasticity model is usually regarded to be more accurate.

One way to construct a distributed plasticity model is using displacement-based (DB) finite
beam elements. Elements based on cubic [3] and quartic [4] shape functions were previously
studied. These elements with only a few internal nodes are insufficient to carry out seismic
analysis of frames with one element per member. When using a higher-order nodal element,
the whole set of shape functions has to be reformulated when increasing the order and the
simple choice of nodal points may yield ill-condition stiffness matrices [5]. The research work
extending the p-version element to inelastic analysis of frames has been rather sparse yet.

Another way is using a force-based (FB) beam element, which adopts exact interpolation
functions for internal forces and avoids discretization errors accordingly [6-8]. It realizes sim-
ulation of a nonlinear frame member with one beam element, leading to lower DOFs. The FB
element prevails in earthquake engineering platform OpenSEES [6] for seismic analysis of
frames. However, implementation of FB elements in a finite element program suffers some
inconvenient procedures when dealing with non-uniformly distributed loads, state determina-
tion [7-8], geometrical nonlinearity [9] and consistent mass matrices [10], etc.

In this paper, a new distributed plasticity model, named as quadrature beam (QB) model, is
presented for seismic analysis of structures. It is based on the newly developed weak-form
quadrature element method, in which the variation principle and the differential quadrature
analog are combined. The weak-form quadrature element method has been validated to be
accurate and efficient in elastic problems of varying cross sections [11-12]. In this paper, a
distributed plasticity QB beam model is formulated. Its consistent mass matrix is given for
dynamic analysis. Inelastic time history analysis of the LA 3-story steel frame [13] is con-
ducted as an example. The accuracy, convergence and CPU time consumption of the QB
model are evaluated, and compared with those of the DB and FB models. Results indicate that
the quadrature beam model is accurate and efficient.

2 DIFFERENTIAL QUADRATURE ANALOGS

The essence of the conventional differential quadrature analog is that the derivative of a func-
tion at a grid point is expressed by weighted linear summation of function values at all grid
points in the domain of problem [14]. For instance, the first order derivative of a function f

with respect to a variable ¢ at a grid point & = ¢ is approximated by

df M .
= =NC®fE), =12, M
iz, ~yere. (1)

where Cij(l) are the weighting coefficients for first order derivatives, which are only dependent
upon the number of grid points M and their explicit expressions are given by [12]
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For Bernoulli-Euler beam analysis, the C1 continuity at ends of the element requires gen-
eralized differential quadrature analogs where the first order derivative of the function at each
end is included in approximation. Thus, the nth order derivatives is approximated by

d"f df i df
=G —| 4+ 2 :Gﬁ“) f(E)+GW
degn - i1 df = i(j+1) (é]) i(M+2) dé: (3)
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where Gign) are the weighting coefficients which can be determined by Hermitian interpolation

§=4

functions, i.e.
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Differential quadrature analogs are characterized by that only the function values and de-
rivatives at grid points are concerned, so approximation of derivatives is direct and efficient.
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3 FORMULATION OF THE QUADRATURE BEAM MODEL

3.1 Model and assumptions
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Figure 1: A planar beam model with varying cross-section

A planar beam model with varying cross section is shown in Figure 1. The Bernoulli-Euler
beam theory and the hypothesis of plane section hold true. Small deflections and moderate
rotation are assumed. The transverse shear deformations are not considered here. In Figure 1,
(X, y) is the local coordinate system attached to the beam where X is in the axial direction. L is
the beam length. N and Q are axial and shear forces at beam ends, and M is concentrated mo-
ments. p and ( are non-uniform distributed loads in the X and y directions, respectively. U and
v are the translational displacement components along X and y directions, respectively.

For a Bernoulli-Euler beam, the deformations at a certain section X are usually represent-
ed by the axial strain at the reference axis &y and curvatures x. And the corresponding section
forces are the axial load N and the bending moment M. Generally the section deformation is
given in terms of the displacements as

du

&y dx
(0={ -1 o

dx’
For nonlinear problems, an incremental section constitutive relation is usually written, 1.e.
3R (x)=k(x)dg(x) (8)

where R(x) = [N M]" is the vector of internal forces at section X. k(X) is the section stiffness
matrix given by

kll k12
k(X) B |:k21 k22j| (9)

Once the section deformation &(X) is known, the internal forces R(X) and section stiffness ma-
trix K(X) can be obtained using either fiber section models or load-deformation relations of
sections. Details of inelastic section models can be found in [4] and [8]. Different models at
sections in one member can be used to deal with problems of varying cross sections and even
varying material properties.

3.2 Variation principles and static equilibrium equations

Inducing a dimensionless coordinate ¢ = 2x/L-1, the governing equations of the above
problem are established from virtual work principle, i.e.
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5UL +5U =0 (10)

int
where the internal virtual work and the external virtual work are given by

sUl =s[ se"Rds
M dv (11

1 M dv
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and S = L/2. Lobatto integration rule with M sampling points (see Fig. 2) is used to
evaluate the integrals, resulting in

M
$> W3E'R, = 3d@TF" (12)
i=1

where & = €(&i), Ri = R(&), & and W, are the Lobatto sampling points and weighting
coefficients [15]. The element nodal displacement vector in Eq. (12) is written as

;
d9=[d] dj, dj - dj,] (13)
where
; u v (QJ , 1=LM;
di = dg i (14)
[u v, i=2,..,M-L.

Correspondingly, the element nodal force vector in Eq. (12) is expressed by
=[FF f Ao AL (15)
where

e {[N(§)+sw|o<§) Q&) +SWa(&) M(£)/S]. i=1M; 06

[SWip(&) Swa(&)], i=2,.,M.
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Figure 2: Lobatto points of a QB element

Based on differential quadrature analogs, the derivatives in section deformation
vectors at the Lobatto points g are directly approximated using the nodal displace-
ment vector d®. The section deformation vector at Lobatto points i is expressed in
terms of & coordinate as

g =Dg, (17)
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where D=diag[1/S 1/S* 1/S”] and
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After substitution of the section deformation approximation in Egs. (17-18) into Eq. (12),
the incremental-form equilibrium equations are obtained as

5F =K5d® (19)

where the element tangent stiffness matrix is given by

M
=S WBgDkDB,, (20)

i=1

3.3 Consistent mass matrix

The kinematic energy of the beam element is given by

N2
e :%IOLPA(X)(UZ +v2)dx+%jo'-p|(x)(%} dx

. 2 (1)
=_ZWpA (u +V, ) ZWp (85‘5‘§‘j

=1 i=1

where pA ” p Y, Z dde and pI _U p y,Z Zdydz, respectively. The derivatives

in the 1ntegra1 are also approximated using dlfferentlal quadrature analogs. Therefore, the kin-
ematic energy can be written as

e 1'e e) (e 1'e e e)\ (e
T():Ed( TMEG® :Ed( )T(Mg)+M‘R))d() (22)

M is the translational component of mass matrix and M& is the rotational component of
mass matrix, given by
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in which | is a 2X 2 unity matrix, and Bg; is a vector given by

BGi:[bGi,z bGi,l bGi,M+l bGi,M+2 bGi,3 bGi,M:I

(24)
_ (1)
be;=[0 G’ ]

Since the numerical integration scheme and differential quadrature analog in the mass
matrix formulation are consistent with those in stiffness matrix, the mass matrix in this sec-
tion is still called “consistent mass matrix”.

4 ANALYSIS OF LA 3-STORY MOMENT-RESISTING FRAME

Time history analysis of a 3-story moment-resisting steel frame (Figure 3) is presented to ver-
ify the QB model. The frame is in the North-South (NS) direction, as a piece of the Los Ange-
les 3-story model building in the SAC steel project [13]. The material is bilinear kinematic
hardening, with the elastic modulus 210, 000MPa, and the hardening modulus 6,300MPa. The
yielding stress of the steel is 248MPa for all beams, and 345MPa for all columns. The distrib-
uted load on the first and second story beams is 13.90KN/m, while on the third story beams
4.57KN/m. The additional floor mass on the first and second story beams is 1,372Kg/m, while
on the third story beams 915Kg/m. The mass of walls is added on the columns, which on the
side columns is 1,098Kg/m and on the inner columns is 1,555Kg/m.

NS moment-resisting frames NS gravity frames
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Figure 3: Elevation and member sizes of the LA 3-story Frame.
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An acceleration time history of the TAFT earthquake is chosen (Figure 4) and scaled to
generate ground motions with the Peak Ground Accelerations (PGAs) 0.10, 0.20, 0.30, 0.40,
0.45, 0.50 and 0.55g respectively. Time interval of the ground motions is 0.005s. Dynamic
analysis of the frame is undertaken using the QB model with consistent mass matrix, coded in
Fortran. To reduce the computational cost, a Guyan condensation procedure is included to
condense the internal DOFs of each QB element. The characteristics of convergence and
computational efficiency are studied. Dynamic analysis using the BEAM188 element with
consistent mass matrix is conducted in ASNYS [16] for verification. Meantime, comparison is
made with the FB beam model in OpenSEES (v2.2.0), in which only lumped mass matrix is
available for inelastic dynamic analysis of frames. All computations were performed on a lap-
top computer with a 5-core processor @2.65GHz and 4.00G memory. The convergence crite-
rion of Newton-Raphson iteration process is set as that the Euclid norm of residual forces is
controlled to be less than 107
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Figure 4: An acceleration time history of the TAFT earthquake.

Figures 5 and 6 show the displacement responses and acceleration responses at the roof for
the three models. In QB and FB models, the number of integration points in one element is
chosen as M = 10. In ANSYS, 10 four-node BEAMI188 elements are used to simulate one
frame member, and shear deformation is adjusted to be negligible. The QB results agree with
ANSYS results, and are slightly different from the FB results in OpenSEES.
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Figure 6: Time histories of the roof acceleration responses for the three models, PGA=0.50g.



R. He, R. Zhang and H. Zhong

The peak values of the responses are illustrated in Figures 7 and 8. Referring to the
ANSYS results, the QB model is accurate in the inelastic dynamic analysis. The FB results
have relative errors about 5% to 10%. It is believed that the lumped mass matrix of the FB
model reduces the accuracy.
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Figure 7: Peak values of the roof displacement re- Figure 8: Peak values of the roof acceleration responses
sponses for different PGAs. for different PGAs.

Figure 9 gives the convergence of the peak response |U|max of the QB and FB models under
PGA=0.50g for different number of integration points M. In OpenSEES, M is restricted to be
not greater than 10. Results of both models can converge by increasing M, and their conver-
gence rates are similar.

0.092
_ —=—QB
0.090 o e --®-FB
—_ r '.'
E 0088| o
é I L L i
< 0.086 |-
0.084 |
0082 n 1 n 1 " 1 1 1 n 1 1 1 L 1 n 1
4 6 8 10 12 14 16 18 20

Figure 9: Peak values of the roof displacement responses for different M, PGA = 0.50g.

The CPU time consumptions of the three models are listed in the Tables 1 and 2. The
commercial code ANSYS is versatile and accurate, but its computational cost is much greater
for seismic analysis of an entire structure. The computational cost of the QB model is close to
that of the FB model in OpenSEES. When increasing the number of integration points M, the
CPU time consumption of the QB model increases almost linearly. The quadrature beam
model is efficient and suitable for seismic analysis of frames.

PGA /(g)  tos/(s) topensees /(S) tansys /(h)
0.10 40.0 335 —

0.20 40.1 33.6 —

0.30 40.3 33.2 12.5

0.40 47.9 33.8 13.0
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0.45 494 34.8 —
0.50 542 35.5 13.5
0.55 59.8 36.0 —

Table 1: CPU time consumptions for different PGAs.

M tos /(s) topensees /()
5 25.1 18.2

6 31.8 21.5

7 35.5 24.5

8 41.4 27.2

9 48.9 30.8

10 54.2 35.5

15 83.5 —

20 120.5 —

Table 2: CPU time consumptions for different M.

5 CONCLUSIONS

o A distributed-plasticity quadrature beam (QB) model with consistent mass matrix is for-
mulated in this paper. For inelastic dynamic seismic analysis of frames, one member is
simulated by one QB element.

¢ The accuracy and the convergence of the QB model are verified. Results of the QB mod-
el are in excellent agreement with those of the DB model in ANSY'S, but the CPU time
consumption is much lower. The convergence rates of the QB and the FB models are
comparable, and the time consumption of the QB model is slightly higher. In contrast to
the only available lumped mass matrix of the FB model, however, the consistent mass
matrix of the QB model makes it advantageous for inelastic dynamic analysis.

e The quadrature beam model is accurate and efficient, highlighting its great potentials in
seismic analysis of frames.
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