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Abstract. The critical Courant number limiting the length of time step in explicit integration
schemes is inversely proportional to the maximum natural frequency of a finite element mesh.
The well known recommendationCo = 1 for linear finite elements is deemed to be best. In fact,
for some configurations this choice may dangerously overestimate the critical time step. It was
shown in an earlier paper that by increasing the number of elements in the finite element mesh
one will paradoxically improve the mesh’s stability towards its theoretical limit. The present
paper refines some details, presenting small scale numerical tests. The first test involves a long
truss/bar consisting of one row of elements whose critical Courant number changes as elements
are added one after another. Since this increases the critical number one may pick up a time
step such that it is supercritical to a certain mesh but becomes subcritical by merely adding
one element. In a similar fashion, a square area is tested in the second example, using different
arrangements of edge supports. It turns out that the numerical solutions to wave propagation
may be strongly influenced by small variation of distant boundary conditions, which should
normally be physically insignificant.
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1 INTRODUCTION

Detailed analysis of accuracy and stability of finite element wave propagation solutions was
presented in review paper [1] and references cited therein for various finite elements including
consistent and lumped mass matrices. The critical Courant number limiting the length of the
time step in explicit integration schemes, namely the central difference method, follows from
the famous formula

Cocrit =
2

ω̄
(1)

whereω̄ is the dimensionless frequency

ω̄ =
ωmaxH

c1

(2)

with ωmax being the maximum natural frequency of a finite element mesh,H the element size,
andc1 the speed of the fasted wave propagating in a continuum, typically the longitudinal wave.
Nearly equally famous recommendationCo = 1 (or slightly less to be on the safe side) for linear
finite elements, also known to engineers as “rule of thumb” is deemed to be best. In fact, this
observation comes from dispersion analysis but, as it has been shown in Ref. [1], for some
configurations it may dangerously overestimate the critical time step. It was also shown that by
increasing the number of elements,N , in the finite element mesh one will improve the mesh’s
stability towardsCocrit = 1 asN →∞, which is rather a paradoxical finding.

The present paper refines these details, presenting small scale numerical tests, which exem-
plify some peculiarities. The first test involves a long truss/bar consisting of one row of elements
whose critical Courant number changes as elements are added one after another. Since this in-
creases the critical number one may pick up a time step such that it is supercritical to a certain
mesh but becomes subcritical by merely adding one element. In a similar fashion, a square
area is tested in the second example, using different arrangements of edge supports. It turns out
that the numerical solutions to wave propagation may be strongly influenced by small variation
of distant boundary conditions, which should normally be physically insignificant. Finally, the
third illustration shows the direct numerical results relevant to the above mentioned choices of
sub and supercritical times steps.

2 PROBLEM DESCRIPTION

This section concerns with essentials of wave propagation in homogeneous solids, finite
element technology and dispersion computation.

2.1 Propagation of waves in an elastic isotropic continuum

Theith equation of motion in linear elastodynamics reads

(Λ + G)uj,ji + Gui,jj = ρüi (3)

In this equation,Λ andG are Laḿe’s constants,ρ is the mass density andui is the ith com-
ponent of the displacement vector. Furthermore, a comma placed before subscripts refers to
spatial differentiation whereas the superimposed dots denote the time derivatives. The summa-
tion convention on repeated indices is assumed. The Lamé constantsΛ, G may be related to
engineering constantsE, ν as

Λ =
νE

(1 + ν) (1− 2ν)
, G =

E

2 (1 + ν)
(4)
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Jǐrı́ Plěsek, Radek Kolman and Dušan Gabriel

whereE andν are Young’s modulus and Poisson’s ratio.
In an unbounded isotropic continuum, two types of planar waves exist: the longitudinal wave

and two transversal waves, featuring mutually orthogonal polarisation. The longitudinal wave
propagates with the speed

c1 =

√
Λ + 2G

ρ
(5)

The speed of the two transversal waves is

c2 =

√
G

ρ
(6)

The standard continuum is said to benon-dispersive. This is, by d’Alembert’s solution, because
the wave profile (wavelength) does not affect the velocity of propagation.

As a special case, one may consider a plane harmonic solution to Eqn. (3) as

ui = Ui(x) exp(ik (p · x± ct)) (7)

or its equivalent form
ui = Ui(x) exp(i(k · x± ωt)) (8)

wherei =
√
−1 is the imaginary unit;x is a position vector;t is time;k is the wave number;

p is the unit normal to the wave front;k is the wave vector,k = kp; c is the phase velocity;ω
is the angular velocity; andUi is theith component of the amplitude vector at the point defined
by the position vectorx. For a given wavelengthλ, the wave numberk may be computed from

k =
2π

λ
(9)

The phase velocityc is related toω andk by

c =
ω

k
(10)

Finally, the group velocitycg is defined as

cg =
dω

dk
(11)

In non-dispersive systems,c is a constant and sinceω = ck, we getcg = c. Thus, in the absence
of dispersion the group velocity equals the phase velocity. On the other hand,cg 6= c indicates
dispersion.

2.2 Finite element method

Spatial discretization by the finite element of an elastodynamic problem introduces the ordi-
nary differential system

Mü + Ku = R (12)

Here,M is the mass matrix,K the stiffness matrix,R is the time-dependent load vector, andu
andü contain nodal displacements and accelerations. The element mass and stiffness matrices
are given by

Me =
∫

V
ρHTH dV (13)
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and
Ke =

∫
V

BTCB dV (14)

whereC is the elasticity matrix,B is the strain-displacement matrix,H stores the displacement
interpolation functions and integration is carried over the element domain. Global matrices are
assembled in the usual fashion. Under plane strain conditions, the elastic matrixC takes the
form

C =
E

1− ν2

 1 ν 0
ν 1 0

0 0 1−ν2

2(1+ν)

 (15)

The mass matrix defined by Eqn. (13) is called the consistent mass matrix.
Explicit integration methods, such as the central difference method discussed later, require

the mass matrix inverted. Thus, it is advantageous to have it diagonal orlumped.In contrast to
consistent matrices, which are uniquely defined by the variational formulation, lumping proce-
dures are not strictly prescribed. The only common principle is the ability of FEM to assemble
diagonal global matrix from the element mass matrices, thus, lumping may be performed on
an element basis. Out of many methods rendering the mass matrix diagonal we shall refer to
the simplest: the row sum method (RS) for bilinear elements and the Hinton-Rock-Zienkiewicz
method (HRZ) for quadratic elements—see Ref [1].

In the subsequent analysis, a regularHx×Hy mesh composed of plane rectangular elements
is considered withHx andHy measuring the length of element edges aligned with coordinate
axes. It proves useful to define reference matricesM̄e, K̄e for a parent element having unit
propertiesE andρ, unit thicknessb and unit lengthHx = 1. Then performing integration over
the reference domain1× r one gets

Me = brH2
xρM̄e (16)

and
Ke = bEK̄e (17)

Therefore, a class of problems is defined by two constants: the Poisson ratioν and the aspect
ratio r = Hy/Hx. Within this class, the reference stiffness matrixK̄e is a function ofν and
r whereas the reference mass matrixM̄e is independent of both. Denote bȳωe the maximum
natural frequency of asingleelement described by these unit matrices. For example, one may
computēωe = 2.39 for the bilinear RS elements or̄ωe = 7.61 for the quadratic serendipity HRZ
elements.

2.3 Dispersion computation

The smooth solutions, Eqn. (7) and (8), no longer apply to discretized system (12). In this
case, the speed of propagation of an harmonic wave depends on its angular frequency. Accord-
ing to Ref. [1], such dependence may be manifested by the dispersion plot shown in Fig. 1. In
general, dispersion behaviour is investigated by considering an harmonic wave train travelling
through unbounded mesh, which may be accomplished by prescribing periodic boundary con-
ditions. Thus, the normalized frequencies read off the plot actually represent the limit natural
frequencies corresponding to a very large (theoretically infinite) finite element mesh.

As in the preceding section, denote byω̄λ the supreme value of the normalized angular
frequency in Fig 1, e.g.̄ωλ = 2.00 for bilinear elements and̄ωλ = 7.37 for quadratic elements.
It is worth mentioning that̄ωλ < ω̄e in every case. It should also be noted that the dispersion
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Figure 1: Dispersion curves for bilinear (left) and serendipity (right) elements.

diagrams discussed in this text are entirely due to spatial dispersion, neglecting effects of time
integration—refer to paper [1] for complete treatise. This by no means oversimplifies actual
problems since they are namely these theoretical values that enter stability criteria.

2.4 Explicit time integration and numerical stability

As a representative of explicit schemes, reviewed in Reference [2], the central difference
method (CDM) will be discussed. Its discrete operator reads

1

∆t2
Mut+∆t = Rt − (K− 2

∆t2
M)ut − 1

∆t2
Mut−∆t (18)

whereRt contains forces acting on the nodal points at timet. It is well known that CDM is
only conditionally stable, Ref. [3], that is

∆t ≤ 2

ωmax

(19)

whereωmax is the maximum eigenfrequency of the finite element mesh. The highest frequency
can be computed by the standard FE software, aiming at the lowest eigenvalue withK andM
swapped. This method was indeed employed in all the numerical computations presented here.
Alternatively, the crititical time step may be estimated analytically as in Ref. [4].

At this point, it is convenient to introduce the Courant dimensionless number defined as

Co =
c1∆t

H
(20)

In elastodynamics,c1 is the velocity of the longitudinal wave. Using the latter definition and
that ofω̄ in Eqn. (2), the stability condition (19) can be rephrased as

Co ≤ 2

ω̄
(21)

or, definingCocrit, in the form of Eqn. (1). InequalityCo ≤ 1 then exactly manifests the
Courant-Friedrichs-Levy stability condition for the linear truss element [2] but for other ele-
ments it may not be generally valid. On the other hand, we know, by Fried’s theorem [5],
which is a direct consequence of Sturm’s polynomial separation property, that the maximum
frequency is bounded bȳωe obtained as the maximum eigevalue taken over all the elements in
the FE mesh.
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If the mesh is regular, composed only of rectangular elements of the same aspect ratio (the so-
called structured mesh), one may devise another estimate of the critical time step, which lends
some interesting insight into the problem of numerical stability in general. One asymptotic case
arises for the infinite mesh, whenωmax equals the supremum taken over all the dispersion curves
for the particular element, i.e.,̄ωλ is exploited. Tentatively, one may conjecture

ω̄λ ≤ ω̄ ≤ ω̄e (22)

This expression is indeed valid for an abitrary body with free boundary,Γu = ∅, but does
not hold for a constrained mesh, for instance, if some displacement boundary conditions are
prescribed. The meaning of the statement (22) will be clarified in full by examples shown in the
next section.

Finally, it should be pointed out, that precisely because of the inequality (22), the true fre-
quency of a real mesh will probably be higher than the estimate stemming from dispersion
theory. Hence, the popular formulac1∆t = H for the determination of time step length is not
entirely safe.

3 NUMERICAL EXPERIMENTS

Unit dimensions were set in the numerical tests as follows: mass densityρ = 1, Poisson’s
ratio ν = 0.3, and Young’s modulusE = 0.7428 . . . so thatc1 = 1 and c2 = 0.5345 . . ..
Furthemore, plane strain square bilinear elements with edge lengthH = 1 and unit thickness,
b = 1, were employed. The reason for chosing linear rather than quadratic elements to illustrate
stability properties is that the difference betweenω̄λ = 2.00 andω̄e = 2.39 is greater for these
elements. HavingN elements in the mesh, the total mass ism = NρH2b = N .

3.1 Plane strain bar

As the first example we consider a plane strain bar whose length is variable depending on
the number of elements used. Fig 2 shows the eigenmode corresponding to the bar’s maximum
frequency for40×1 discretization. The value of frequencies computed for variousNs are listed
in Tab. 1.

Figure 2: Eigenvector corresponding to the highest frequency of a bar with free ends.

One important observation following the inspection of Tab. 1 is that starting from the20 ×
1 bar, the maximum frequency does not change within the first 8 digits, which suggests an
existence of the limit. Alas, this limit,̄ω = 2.16, differs from the theoretical valuēωλ = 2.00.
On the one hand, our sequence correctly starts atω̄e = 2.39 for 1× 1 discretization, but on the
other, the asymptoticsCocrit = 1 has never been reached. Why is it so? The answer lies in
Fig 2. Since only the free ends vibrate, the maximum eigenvalue does not depend on the bar’s
length but solely on this boundary effect. The limit solution will not fit the periodical boundary
conditions characteristic of the dispersion approach.
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N ω̄ Cocrit

1x1 2.3904568 0.8366602
2x1 2.1837346 0.9158622
3x1 2.1865457 0.9146848
4x1 2.1664669 0.9231620
5x1 2.1649080 0.9238268
6x1 2.1621023 0.9250256
7x1 2.1616266 0.9252292
8x1 2.1612303 0.9253988
9x1 2.1611334 0.9254403
10x1 2.1610747 0.9254654
20x1 2.1610454 0.9254780
40x1 2.1610454 0.9254780
80x1 2.1610454 0.9254780
100x1 2.1610454 0.9254780

Table 1: Critical Courant numbers for the bilinear finite element mesh of a free bar.

Another interesting observation follows from the graphical representation depicted in Fig. 3
on the log scale. Apart from the limit, there is a pronounced gap between the three and four
element configurations. SelectingCo = 0.92, the time step is stable for the4 × 1 mesh but
unstable for the smaller3× 1 mesh. This motivates the critical test defined in Fig. 4.
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Figure 3: Distribution of the critical Courant number for the bar with free ends.

A three-element bar is loaded by the Heaviside step functionF (t) = 1 for t > 0. Since
Co = 0.92 > Cocrit one expects an incursion of instability after some time has elapsed but
a stable solution if a four-element problem had been considered instead. In both the cases,
parabolic displacement evolution

u(t) =
F

2m
t2 =

t2

2N
(23)

applies to the motion of the whole body. The average acceleration,1/N , measured at the control
pointA for the4×1 configuration equals 0.25. The existence of the stable solution is confirmed
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F = 1/2 F(t)1
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N H

F = 1/2 F(t)2 A

Figure 4: Transient problem with Heaviside load; unstable configuration.

by plots shown in Fig. 5. The oscillatory course of acceleration history is due to waves reflection
about the mean value 0.25, which matches the rigid body motion. By contrast, the unstable3×1
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Figure 5: Displacement, velocity and acceleration in the stable4× 1 computation.

problem exhibits the solution’s uncotrolled blow up at aboutt = 3000, see Fig. 6. The instability
commences even much earlier after several wave reflections, which is nicely captured in Fig. 7.

Let us return to the original eigenvalue problem shown in Fig. 2. This time the boundary
conditions are modified by clamping the right end. The corresponding eigenvector and the
frequencies computed are shown in Fig. 8 and Tab. 2, respectively. The same limitω̄ = 2.16
is reached already by the8 × 1 discretization, which is not surprising. Indeed, the vibration
modes roughly correspond to those of the free bar twice the length of the free-fixed bar. A
more interesting fact is that the maximum frequency nowincreases.This is because the results
converge to the same limit as before but for eachN -element bar the constrained configuration
has lower maximum frequency than the free one. The critical Courant number distribution is
shown in Fig. 9
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Figure 6: Displacement, velocity and acceleration in the unstable3× 1 computation.

N ω̄ Cocrit

1x1 1.8403500 1.0867498
2x1 2.1530847 0.9288998
3x1 2.1587386 0.9264670
4x1 2.1608547 0.9255597
5x1 2.1609985 0.9254981
6x1 2.1610395 0.9254805
7x1 2.1610425 0.9254793
8x1 2.1610454 0.9254780
9x1 2.1610454 0.9254780
10x1 2.1610454 0.9254780
20x1 2.1610454 0.9254780
40x1 2.1610454 0.9254780
80x1 2.1610454 0.9254780
100x1 2.1610454 0.9254780

Table 2: Critical Courant numbers for the free-fixed bar.

We close our discussion concerning this example with the remark that the conjecture (22)
does not hold for a constrained problem. For example, for the free-fixed barω̄λ > ω̄1×1, be-
cause the maximu frequency has been reduced by the imposition of the boundary condition.
Theoretically, one could even have hadω̄ = 0 if all the nodes had been fixed. By contrast,ω̄e

always forms the upper bound.
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0 10 20 30 40 50
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

Time [s]

A
cc

el
er

at
io

n 
[m

/s
2 ]

Figure 7: Detail of acceleration build up.

Figure 8: A free-fixed bar.

3.2 Plane strain square domain

Similar examples as in the preceding section may be analysed. Consider a plane strain square
domain shown in Fig. 10 and the critical Courant number distributions for both (fixed and free)
boundary configurations—Fig. 11.

In this case, convergence to the limitCocrit = 0.99 is observed. Similarly as for the free bar
this number is slightly less than the theoretical valueCocrit = 1. The reason can again been
seen in Fig. 10, which suggests that it is the vibration of the corner elements that is responsible
for the maximum frequency and is, in fact, independent of the mesh size.

A new phenomenon is detected with the constrained mesh. Comparing it with the free-fixed
bar one notices that, here, zero displacements are prescribed along the whole boundary. This
means that adding extra elements is merely equivalent to mesh refinement, which in turn implies
the increase of the dimensionless maximum frequency. Since the mesh grading is regular and
there are no boundary effects, monotonous convergence to the theoretical limit,Cocrit = 1,
follows. It is interesting to note that also in this situationω̄ < ω̄λ, which violates condition (22)
as the present problem is fully constrained.

4 CONCLUSIONS

It might seem at first glance that, except illustrating certain mathematical principles, the
present study bears little importance to real-world computation. On the one hand, todays en-
gineering problems are extremely large (rendernigN → ∞ effectively) and, on the other, one
may safely use the upper bound by calculating the maximum eigenvalue of a single element.

It should be borne in mind that Fried’s estimate,ω̄ ≤ ω̄e, is only useful for a structured mesh
when all the elements have the same spectrum. For an unstructured mesh, this information is
hardly available and one must resort to other estimates. It is namely under such circumstances
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Figure 9: Distribution of the Critical Courant number for the free-fixed bar.

Figure 10: Maximum eigenmode of a free square domain (left) and the domain with fixed edges (right).

that the analysts use thēωλ limit derived from dispersion diagrams often unaware of its pitfalls.
It must be emphasised that for the reasons exaplained in the paper the frequent recommendation
c1∆t = H is not entirely safe.

The examples involving free bodies clearly demonstrated the way the vibration of corner
elements changed the stability limits. Hence, we conclude that even distant boundary condi-
tions, which should normally be physically insignificant, may considerably influence numerical
solution.
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10
0

10
1

10
2

0.80

0.85

0.90

0.9913

0.95

1.00

1.05

Number of elements

C
rit

ic
al

 C
ou

ra
nt

 n
um

be
r

1 2 10 100
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Number of elements

C
rit

ic
al

 C
ou

ra
nt

 n
um

be
r

Figure 11: Critical Courant numbers for free (left) and fixed domain (right).

[3] K.C. Park, Practical aspect of numerical time integration.Computers& Structures, 7,
343–353, 1977.

[4] D.P. Flanagan, T. Belytschko A uniform strain hexahedron and quadrilateral with orthog-
onal hourglass control.Int. J. Num. Methods Engng., 17, 679–706, 1981.

[5] I. Fried, Bounds on the extremal eigenvalues of the finite element stiffness and mass ma-
trices and their spectral condition number.Journal of Sound and Vibration, 22, 407–418,
1972.

12


	INTRODUCTION
	PROBLEM DESCRIPTION
	Propagation of waves in an elastic isotropic continuum
	Finite element method
	Dispersion computation
	Explicit time integration and numerical stability

	NUMERICAL EXPERIMENTS
	Plane strain bar
	Plane strain square domain

	CONCLUSIONS

