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Abstract. This work deals with reconstruction of distributed force signal resulting from a non 

punctual object impacting perpendicularly an elastic homogeneous and isotropic rectangular 

plate. The impacting force is assumed to be uniformly distributed over a rectangular patch of 

the plate. The direct problem was solved by using modal decomposition method with explicit 

analytical modes. A discrete problem was written for that by sampling the obtained convolu-

tion integral. To extract the pressure signal by deconvolution of the dynamic response meas-

ured at a given point of the plate, solution of an inverse problem had been considered. Since 

this type of problem is known to be ill-posed due to bad conditioning of the involved Toeplitz 

like matrix, regularization is needed to obtain a physically meaningful solution. A new regu-

larization technique based on truncation filtering was examined. This technique uses as a first 

step the generalized decomposition of Toeplitz matrix on singular values. Then, regulariza-

tion of the decomposed form through a truncation filter is performed. The truncation consists 

in eliminating the first low index terms up to an optimal rank representing the contribution of 

low amplitude generalized singular values. If the impact force signal has a half sine like stan-

dard form, the index corresponding to time instant where the maximum displacement re-

sponse is obtained was found to be the optimal order of truncation. This technique has proved 

to be effective in reconstruction of impact pressures through various cases of study and the 

computational cost was found to be much lower than that of the classical truncation method 

based on L-curve criterion. 
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1 INTRODUCTION 

To perform structural health monitoring or reliability analysis of structures, it is essential to 

provide accurate characterization of input forces experienced during service operation. In 

common practice, the input force is measured by using a force transducer that is positioned in 

the load path. On many circumstances, such as a high-speed impact of an object onto a struc-

ture, it is difficult to apply this technique such as a bird impacting an aeroplane fuselage. An-

other technique that has been widely employed for the impact-force signal reconstruction is 

based on analysis of the inverse problem. This means that the dynamic force is recovered 

from the data of the measured elastic response. When the impact point is known, the problem 

is equivalent to operating deconvolution of two signals: the measured response and the trans-

fer function characterizing the dynamics of the structure. In many cases, the deconvolution 

results in an ill-posed problem in which the data noise strongly affects the solution accuracy. 

Therefore, it is difficult to obtain an accurate solution for such problems, so that, regulariza-

tion is needed to obtain a physically meaningful solution. 

There are a number of publications which deal with the impact-force reconstruction. In [1, 

2, 3] the impact force profile had been reconstructed by using spectral analysis. The proposed 

method had utilized the convolution theorem that expresses the time domain deconvolution as 

a simple division in the frequency domain. Later on, various authors [4, 5, 6, and 7] adopted a 

more systematic approach to regularize the deconvolution problem by using either the singu-

lar value decomposition method (SVD) or the generalized singular value decomposition me-

thod (GSVD). These authors had considered the problem of a localized impact where the 

object could be approximated as a single point. In many cases, however, the impacting object 

is massive and the impact zone could not be approximated as a single point and the impacting 

force takes the form of a distributed pressure over the impact zone. In more recent works [8, 9, 

10, 11] the problem of reconstruction of distributed dynamic loads on structures like Euler 

beam, thin plates or cylindrical shells had been tackled. The authors had used either the modi-

fied modal method or the mode-selection method. Though these methods are robust in com-

parison with Tikhonov based methods some problems such as the improvement of the 

selection criterion and the relative high errors on boundaries are still open [11]. 

Certain researchers have indicated that a major drawback of the Tikhonov-GSVD method 

is the expensive computational cost associated to GSVD and consequently the method is only 

suitable for small scale problems. 

In the present work, we consider the impact pressure reconstruction problem in the case 

where a uniform distributed force is applied onto a homogeneous and isotropic elastic rectan-

gular plate. The impacting zone is assumed to be a rectangular patch. For this purpose, the 

direct solution has been computed at first by using an analytical formula. Then, the regulariza-

tion method based on GSVD method with truncation filtering was used. The truncation regu-

larization method [12] is a particular case of the general filter factor regularization method 

and looks a lot like Tikhonov regularization [13], but it is simpler to implement. Here, a new 

technique of constructing the filter is examined. It is based on an a priori defined truncation 

order which reduces considerably the computational cost. This new method was tested on 

several case studies and the obtained results have shown that it is well suited in regularizing 

pressure reconstruction problems wherever the impact pressure profile is not too different 

from a half sine shape. 

2 MATERIALS AND METHODS 

We consider a rectangular plate as shown in figure 1 which has the dimensions a , b  and e  

representing respectively the length, width and thickness. It is assumed to be simply sup-
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ported on its ends. The plate is assumed to be made of a homogeneous and isotropic elastic 

material with Young’s modulus E , Poisson’s ratio υ  and densityρ . The applied force model-

ing impact is assumed to be uniformly distributed over a rectangular patch of the plate. The 

dynamic response in terms of displacement, velocity, acceleration or strains is considered at a 

point which is located at a given distance away from the centre of the loading rectangle, figure 

1.  

 

Figure 1: Simply supported rectangular plate showing the loading conditions and the point of response 

measurement 

 The equation of motion of a simply supported rectangular plate [14], can be expressed un-

der the following form  

D w(x, y, t) cw(x, y, t) hw(x, y, t) q(x, y, t)∆∆ + + ρ =� ��                                                            (1) 

where x  is the horizontal coordinate, y  the vertical coordinate, t  the time, w(x, y, t)  the 

transverse displacement, 
0 0 0 0[x u / 2,x u / 2] [y v / 2,y v / 2]q(x, y, t) p(t) (x, y)− + × − += ℑ  the applied loading 

with ℑ  the indicative function taking the value one on the domain shown in subscript and 

zero elsewhere,  c  the damping coefficient, 3 2D Ee /(12(1 ))= − υ the plate flexural rigidity 

modulus and 
4 2 4

4 2 2 4
( , , ) 2

∂ ∂ ∂
∆∆ = + +

∂ ∂ ∂ ∂

w w w
w x y t

x x y y
.  

The above governing equation is assumed to be subjected to the following boundary condi-

tions 

0w =    and 
2

2
0

w

x

∂
=

∂
  for x 0=  and x a=           

                                                                                                                                                   (2)       

0w =    and 
2

2
0

w

y

∂
=

∂
 for y 0=  and y b=  
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By applying the modal superposition technique, the displacement w(x, y, t) can be shown to 

be expressed under the following form 

   
t

0 0

0

w(x, y, t) h(x , y , u, v, x, y, t )p( )d= − τ τ τ∫                                                                       (3)   

where h is the transfer function given by 

m n m n

0 0

0 0 2
m 1 n 1 m n

m n

m x n y16 1 m u
h ( x , y , u , v , x , y , ) s in ( ) s in ( ) s in ( )

m n a b ah

n v m x n y
sin ( ) sin ( ) s in ( ) sin ( )e

b a b

∞ ∞

= =

− ξ ω τ

π π π
τ =

γρ π

π π π
γ τ

∑ ∑
               (4) 

  

in which
mn

ω ,
mn

γ and 
mn

ξ are respectively the circular eigenfrequency, the damped circular 

eigenfrequency (
2

mn mn mn1γ = ω − ξ ) and the damping ratio for a given eigenmode (m,n) . 

In many practical circumstances it is possible to represent realistically the impact-force 

such as a half-sine function, figure 2. Shape of real impact force signal is not too different 

from this standard profile. 
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Figure 2: Pressure signal profile defined on the 

period time T 0.006s=  
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Figure 3: Calculated displacement at point 

(x 0.041m, y 0.041m)= =  

 

The elastic response w(x, y, t)  can be computed over the considered time interval c[0,T ]  by 

integrating explicitly equation (3) where 0x , 0y , u, v , x, y take fixed values. In this work, the 

selected configuration of the impacted plate is defined by the following parameters values: 

a 2.05 m= , b 2.05 m= , 3e 5 10 m−= × , mn 0ξ = , 0 0x y 0.1025 m= = , u v 0.0342m= = , 

x y 0.041m= =  and cT 0.012s= . 

Figure 3 gives the displacement calculated at the point (x 0.041m, y 0.041 m)= = . The direct 

elastic response in terms of displacement which is given in figure 3 is stored and will be used 

in the following to reconstruct the impact-force signal. 

To identify the impact-force acting on the plate over the rectangular domain of impact, the 

transfer function based approach is used. In more general problems, transfer functions can be 

determined analytically [15], experimentally [16], or numerically. Here, the transfer function 

is evaluated analytically through time integration of equations (3) and (4). 
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To solve the deconvolution problem associated to equation (3), a discrete problem must be 

written by sampling the convolution integral. This leads in the time domain to the following 

system of algebraic equations 

W HP=                                                                                                                                      (5) 

with 

H( t) 0 0

H(2 t) H( t)

H H(3 t) H(2 t)

0

H(N t) H((N 1) t) H( t)

∆ 
 

∆ ∆ 
 = ∆ ∆
 
 
 ∆ − ∆ ∆ 

�

� �

� � � �

… …

[ ]

[ ]

t

t

W w( t) w(2 t) w(N t)

P p( t) p(2 t) p(N t)

= ∆ ∆ ∆

= ∆ ∆ ∆

�

�

            (6) 

where H is the Toeplitz like transfer matrix, t∆  is the sampling rate and N  the total number 

of samples. 

The sampling rate must be selected in order to recover a predefined cut-off frequency in 

the pressure signal. The matrix H is always ill-conditioned. This means that it can lead to an 

unstable solution which has no physical meaning. Therefore, to find a physically acceptable 

solution the deconvolution problem defined by equations (5) and (6) should be regularized. 

Here, the regularization technique based on the generalized singular value decomposition 

(GSVD) is considered. It should be mentioned that the simpler SVD method has failed to re-

gularize the actual problem. The GSVD-regularized solution of problem defined by equations 

(5) and (6) can be written as follows 

[ ] [ ][ ][ ] [ ] [ ] [ ]
1 t *P X U W H W

−
 = Φ ∆ =                                                                                 (7) 

where (X, ∆, U) being the singular factors of H, [ ]Φ  is the filter factor and 

[ ][ ][ ] [ ]
1 t*H X U

−
  = Φ ∆  is the regularized pseudo-inverse of  H. 

The filter factors goal is to minimize the influence of the low amplitude generalized singu-

lar values. Many techniques have been considered in the literature for that purpose. Among 

them, one finds the regularization techniques: Tikhonov method [13] and GSVD truncation 

method [5]. In the following the truncation based regularisation technique is used. 

The truncation consists of eliminating the first low index terms up to the rank k. This index 

is called the regularization parameter. The index k should be selected in order to eliminate the 

small generalized singular values as well as the oscillating singular vectors. 

The filter Φ  defined by the truncation method writes: 

ij i ijf i, j 1,..., NΦ = δ =                                                                                                                   (8) 

To build the filter Φ  within the framework of truncation method, the rank k should be speci-

fied. The optimal rank should minimize the error between the identified pressure and the real 

pressure. Classically, the L-Curve method has been applied in order to determine the regulari-

zation parameter k by means of a graphical based method. This technique was developed in 

reference [5]. It is based on searching the optimum of a functional composed of two terms, a 

residue called 
2

RN W HP= −  (Residual Norm) and the norm of the solution, designated by 

2
SN P= (Semi-Norm). When the k parametric curve defining SN versus RN is plotted, the 

optimal regularization parameter corresponds to the point of maximum curvature, the corner. 
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However, in practice, this method is often problematic; for measured data the L-curve is dis-

crete and the determination of such point is delicate, because it is not distinguishable on the 

graph.   
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Figure 4. The L-curve associated to truncation filter design showing the corner point defining the optimal 

truncation order 

 

Here a new heuristic method is proposed to determine the optimal rank truncation. 

Through various numerical tests conducted on pressure signals having half sine form, the rank 

defined as the index of the maximum value of the calculated displacement was found to yield 

a  closer form of the real pressure input signal. 

3 RESULTS AND DISCUSSION  

Figure 5 presents the superposition of the real impact pressure with the pressure profile as 

obtained by the inverse problem solution for the impact centre zone given by 

0 0(x 0.0683m, y 0.0683m)= =  and the point of measurement located 

at (x 0.041m, y 0.041m)= = . The pulse period considered is T 6ms= . The truncation order 

which is defined as the index of the maximum value of the calculated displacement is found 

to be 160. The associated CPU time is 68.94.  
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Figure 5: Comparison of the reconstructed pressure profile with the real input pressure for the input sig-

nal shown in figure 2 with period T 0.006s=  
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Figure 6 presents the superposition of the real impact pressure with the pressure profile as 

obtained by the inverse problem solution for the case where 0 0(x 0.0683m, y 0.0683m)= = ,  

(x 0.041m, y 0.041m)= =  and a pulse period T 4ms= . The associated truncation order is 179. 
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Figure 6: Comparison of the reconstructed pressure profile with the real input pressure having the form 

of figure 2 but with a period T 0.004s=  

 

It is clear that the new proposed method and the L-curve based method permit the exact re-

construction of the signal. However in the new heuristic method for which the order of trunca-

tion is defined a priori as the index of the maximum value of the calculated displacement, a 

lower computational cost is reached. The gain is about 47%. This methodology was proven to 

yield results that are independent from the impact location, the measurement point and the 

pulse period. But, it is necessary that the profile of the impacting force should have a half sine 

like form. This is not a real limitation since most of the impacting force signals have this gen-

eral form in practice. 

4 CONCLUSION  

A new heuristic method for reconstruction of distributed force in case of non punctual ob-

ject impacting an elastic rectangular plate was proposed. This method is based on generalized 

singular value decomposition of Toeplitz like matrix obtained for the discrete convolution 

problem relating the displacement dynamical response at a given point and the impact pres-

sure signal. This last was assumed to be uniform over a rectangular patch of the plate and to 

have a half sine profile. To build the filter needed for regularization of the inverse problem, 

the truncation based method was used. The order of truncation corresponding to the index of 

time associated to the maximum measured displacement was found to yield good results. This 

was proven to be the case independently from the impact location, the measurement point and 

the pulse period. Even when the signal is not a half sine one, good results are also obtained. 

The computational cost of this method is lower than that of the classical truncation method, 

which makes it as a relevant alternative to better build the truncation filter needed for regular-

ising the deconvolution in inverse problems.  
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