
 COMPDYN 2011 
III ECCOMAS Thematic Conference on 

Computational Methods in Structural Dynamics and Earthquake Engineering 
M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) 

Corfu, Greece, 25–28 May 2011 

HIGH CONTINUITY SECOND-ORDER HOMOGENIZATION 
OF IN-PLANE LOADED PERIODIC MASONRY 

A. Bacigalupo1 and L. Gambarotta2 

1 Department of Civil, Environmental and Architectural Engineering 
via Montallegro, 1 – 16145 Genova, Italy 

e-mail: andrea.bacigalupo@unige.it 

2 Department of Civil, Environmental and Architectural Engineering 
via Montallegro, 1 – 16145 Genova, Italy 

gambarotta@dicat.unige.it 

Keywords: Masonry, Second-order homogenization, Boundary layer effects, Dispersive 
waves, Material characteristic length. 

Abstract.  In this paper the second-order homogenization of periodic masonry based on a 
computational analysis of the unit cell representative of the masonry wall is derived. The 
multi-scale approach is based on an appropriate representation of the micro-displacement 
field as the superposition of a local macroscopic displacement field, represented in a polyno-
mial form related to the macro-displacement field, and an unknown micro-fluctuation field 
accounting for the effects of the heterogeneities. By this approach a continuous micro-
displacement field is obtained, i.e. in each unit cell and across the interfaces between adja-
cent unit cells. The computational procedure is applied in two steps: the first one corresponds 
to the standard homogenization, while the second step is a second-order homogenization 
based on the results of the first step. Two numerical examples are presented concerning run-
ning bond and English bond masonry. For both the masonry patterns the overall elastic 
moduli of the second-order model  and the corresponding characteristic lengths are obtained; 
the effects on the characteristic lengths of the stiffness mismatch between the brick phase and 
the mortar phase are considered.  Moreover, the wave propagation in the homogenized me-
dium is considered and dispersive waves are obtained. It is shown that remarkable differences 
in the phase and group velocities between the first-order and the second-order homogenized 
models are obtained for wavelengths shorter than ten times the average brick unit size. 
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1 INTRODUCTION 
The non-local homogenization of periodic masonry is a subject of some interest because in 

many cases the brick size is not negligible if compared with the structural size, the character-
istic length of applied forces or, finally, the wavelength of waves propagating in the wall. 

Cosserat constitutive models of periodic masonry have been proposed by several Authors 
[1-4] as result of homogenization procedures based on an idealization of the masonry as an 
assemblage of rigid blocks interacting through linear elastic interfaces represented as a La-
grangian system. To overcome the limits deriving from the assumption of rigid blocks Casolo 
[5] proposed a Cosserat homogenization based on a heuristic evaluation of the mean local ro-
tation of the brick units. The Cosserat homogenization technique proposed by Forest and Sab 
[6] for continuously deformable heterogeneous media has been extended to periodic masonry 
by Bacigalupo and Gambarotta [7,8] and by Addessi et al. [9], the last contribution to include 
elasto-damage constitutive equations at the microscale.  In Bacigalupo and Gambarotta [8] an 
evaluation of the reliability of Cosserat homogenization has been carried out by analysing a 
boundary shear layer problem concerning a masonry wall.  The extension of this analysis to 
second-order homogenization has shown this last one to be more suitable with respect to the 
micropolar models (Cosserat and Couple-stresses models). 

Although second-order homogenization techniques have been proposed through an exten-
sion of the classical asymptotic homogenization theory [10-13], they have not been applied in 
the past to the homogenization of periodic masonry because, as observed by Peerlings and 
Fleck [14], they result to be computationally  burdensome. 

The second-order computational procedure here considered is obtained by the analysis of 
the unit cell representative of the heterogeneous periodic material and is based on an en-
hanced representation of the micro-displacement field as the superposition of a local macro-
scopic displacement field, expressed in a polynomial form related to the macro-displacement 
field, and an unknown micro-fluctuation field accounting for the effects of the heterogeneities 
[15]. This assumption guarantees the resulting micro-fluctuation field to be continuous on the 
masonry domain, i.e. in each unit cell and across the interfaces between adjacent unit cells.  

Running bond masonry and English bond masonry are analyzed  through the second-order 
homogenization procedure here considered and the elastic moduli and the characteristic 
lengths of the equivalent continuous are obtained. Moreover, the wave propagation along the 
symmetry lines of the equivalent orthotropic continuum is analysed. Dispersive waves are ob-
tained and the resulting phase and group velocity are evaluated at different wavelengths.    

2 MULTI-SCALE IN-PLANE MODELLING OF PERIODIC MASONRY 

Let us consider a masonry wall with periodic arrangement of the bricks in its own plane as 
shown in Figure 1.a. If only in-plane loads are envisaged and body forces are neglected, the 
masonry wall may be represented as a plane domain under the simplifying assumption of 
plane stress condition. The obtained heterogeneous model is analysed as a Cauchy continuum 
undergoing small strains and the phases are assumed to behave elastically. The position vector 
x of a material point is denoted by its components ( )1 2,x x  with respect to the reference 

( )1 20, ,e e . The periodic continuum is fully characterized by the unit cell [ ] [ ]1 20 0,d ,d= ×A  
shown in figure 1.b (width 1d  and height 2d ), i.e. the smallest plane portion that contains all 
the essential information about the masonry pattern. This unit cell is spanned by the two inde-
pendent orthogonal vectors 1 1 1d=v e , 2 2 2d=v e , so that the boundary C  of the unit cell is 
made up of two pairs of opposite sides corresponding to each other by means of a translation 
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along 1v  or 2v . According to this representation, a variable is periodic in the unit cell A, or 
A-periodic, if it takes identical values at two points on the boundary of the unit cell whose 
difference is a vector of periodicity. In this sense, the elasticity tensor ( )m xC  is A-periodic, 

i.e. ( ) ( )m m
i+ =x v xC C , i=1,2. 

 

 

Fig. 1  (a) Periodic masonry; (b) Unit cell and periodicity vectors. 

At the material point x  of the heterogeneous elastic medium the micro-displacement ( ), tu x  is 

considered together with the corresponding micro-strain tensor ( ) ( ), = ,t sym t∇xx u xε  and the 

micro-stress tensor ( ) ( ) ( ), ,mt t=x x xσ εC  which has to satisfy the local equation of motion 

( ) ( ), ,t tdiv = ρx x u xσ . The resulting set of partial differential equations  

 ( ) ( )( ) ( ), ,m t tdiv ∇ = ρx xx u x u xC  (1) 

has to be solved in terms of the micro-displacement components on the whole masonry wall 
domain with a remarkable computational burden. 

Being the solution of this fine-scale computational approach out of reach, it is convenient 
to replace the heterogeneous model of masonry wall by an equivalent homogeneous one so 
obtaining equations whose coefficients are not rapidly oscillating while their solutions are 
close to those of the original equations. In general, an equivalent standard (Cauchy) contin-
uum is considered, but in cases for which the unit cell size is non vanishing if compared to the 
wall size or to the wavelength it is convenient to introduce an equivalent second-order contin-
uum model [16]. This continuum model is defined at the macroscale where the slow varying 
macroscopic position vector y  is considered and the displacement field ( ),tU y  is defined 
(with component iU  in the assumed reference). The displacement gradient is denoted by 
( ) ( ), ,t t= ∇yH y U y  and, according to Germain [17], the strain field in the second gradient 

continuum is represented by the symmetric first-order strain tensor and by the second-order 
strain tensor, respectively, 

 ( ) ( ) ( ) ( ), , ,      ,t sym t ,t t= ∇ = ∇ ⊗∇y y yE y U y y U yκ , (2) 

the latter being a third-order tensor having components ijk ikjκ κ=  symmetric with respect to j  
and k . 
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x
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The stress field is described by the symmetric first-order stress tensor ( ),tΣ y  ( ij jiΣ = Σ ) 

and by second-order stress tensor ( ),tyµ  (third-order tensor having components ijk ikjµ µ=  
symmetric with respect to j  and k ). From these stress tensors the real stress at the macro-
scale is defined as  ( ) ( ) ( ), , ,t t Div t= − yT y Σ y yµ  so that, in general, ( ),tT y  is not symmetric. 
In case of vanishing body forces, the equation of motion is expressed according to Mindlin 
[16] in the form 

 ( ) ( )( ) ( ) ( )( ), , , ,MDiv t Div t t t⎡ ⎤− = ρ − ∇ ⊗∇⎣ ⎦y y y yΣ y y U y U y Jµ , (3) 

being the inertia properties defined by the mass density at the macro-scale Mρ  and the inertia 

tensor da da= ρ ⊗ ρ∫ ∫J y y
A A

, where ρ  is the mass density at the micro-scale. The first-order 

and second-order stress tensors are energetically conjugate to the corresponding strain tensors 
by the virtual power theorem; therefore, the constitutive equations in case of linear elasticity 
take the form 

 ,      = + = +Σ E EC Y Y Sκ µ κ , (4) 

C  being the (standard) fourth-order elasticity tensor, S  the sixth order tensor related to sec-
ond-order stress and strain tensors and Y  a fifth order tensor taking into account the coupling 
between the first and second-order stress and strain tensors. The equation of motion of the 
second order continuum is obtained for centro-symmetric unit cells, namely with vanishing  
tensor Y , from the field equations (2), (3) and (4) and takes the form 

 ( ) ( )( ) ( ) ( )( ), , , ,MDiv t Div t t t⎡ ⎤∇ − ∇ ⊗∇ = ρ − ∇ ⊗∇⎣ ⎦y y y y y y yU y U y U y U y JC S , (5) 

or in components 

 ( ), , , ,      1, 2,3ijhk h kj ijkrpq r pqjk M i kk i kkC U S U U J U i− = ρ − = . (6) 

In order to replace the first-order heterogeneous model, where the micro-fields are defined, 
with the second-order homogeneous equivalent medium, the variables defined at the corre-
sponding scales have to be properly coupled by means of transition strategies for the strains 
and strains gradients from the macroscale to the discribed microstructure. In the following, a 
kinematic multi-scale model proposed by the Authors [15] is considered. 

3 SECOND ORDER HOMOGENIZATION OF PERIODIC MATERIALS 
In order to couple the kinematics of the classical continuum at the micro-scale to the kine-

matics of the second-order continuum at the macro-scale, the micro-displacement field in the 
unit cell is represented in the form ( ) ( ), , ,t t=u x u y z . Here, y denotes the position vector  of 
the unit cell in which x is located and vector = −z x y  its relative position. This representa-
tion highlights the dependence of the displacement field on both the unit cell position y , 
called the macro-position, and the local position z  at a point of interest. The effective micro-
displacement field ( ), ,tu y z  is approximated by the vector field 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1, , , , , , , : , ,
2

t t t t t tα≈ = + + ⊗ +u y z u y z U y H y z y z z u y zκ , (7) 
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superposition of a polynomial function depending on both the macro-displacement and the 
macro-strain fields and a complementary displacement field ( ), ,tu y z  that represents the mi-
crostructural displacement fluctuation field at the microscale due to the inhomogeneities. To 
obtain continuous micro-displacement fields across the unit cell interfaces, the complemen-
tary displacement field is assumed according to [15], in the form 

 ( ) ( ) ( )1 2, , , , , ,t t t= +u y z r y z r y z , (8) 

each of them having the following representation in components 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 21 2, , , , ,   , , ,i ikl kl klp p i iklp klpr t H t t z r t tκ κ⎡ ⎤= θ + = θ⎣ ⎦y z z y y y z z y , (9) 

where the functions ( )1
iklθ z  and ( )2

iklpθ z  have to satisfy the condition of  A-periodicity, 

namely ( ) ( )1 1
0 0
i i

ikl i iklθ + = θz v z  and  ( ) ( )2 2
0 0
i i

iklp i iklpθ + = θz v z , 0 ,   =1,2i
iC i∀ ∈z . 

The representation of the micro-displacement fluctuation field (9) in the unit cell A(y) is 
the key point on which the following two-step computational homogenization is based. The 
first step is the standard first-order homogenization in which the unknown functions ( )1

iklθ z  
have to be evaluated.  Here the function ( )1

iklθ z  represents the fluctuation displacement along 
direction ie  associated to the homogeneous component 1klH =  of the macro-displacement 
gradient; it is obtained by the computational analysis of the unit cell A(y) with prescribed 
classic periodic boundary conditions on the micro-displacement field 

 ( ) ( ) ,         ,   =1,2,I I
b i b i b iC i+ − = ∀ ∈u z v u z Hv z  (10) 

where bz  is the local position vector at a point on the boundary ,  1 2iC i ,=  (see figure 2.b). 
Once the micro-displacement ( )Iu z  in the unit cell A(y) is obtained for 1klH =  prescribed, 

the 32  unknown functions ( )1
iklθ z  are evaluated ( ) ( )1 I

ijk ijk ij ku zδθ = −z z . Following this proce-
dure for all the components of tensor H the overall (Cauchy) elasticity tensor C  is evaluated 
through an application of the Hill-Mandel condition. 

 

Fig. 2   Displacement vectors of points at the boundary of the unit cell. 

1z

( )1b
α +u z v2z

( )b
αu z

2C

1C

1 1 1d=v e

2 2 2d=v e

bz 1b +z v
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The second step is carried out by considering a homogeneous second-order strain field and 
vanishing macro-strain =E 0 . The 24 unknown functions ( )2

ijklθ z  are obtained by analysing 
the unit cell A(y) with prescribed boundary conditions on the micro-displacement field de-
rived from the A-periodicity condition (9.2). For an arbitrary prescribed homogeneous sec-
ond-order strain tensor κ , the micro-displacement ( )IIu z  is written at corresponding points 

on the boundary bz  and b i+z v  (see figure 2) according to representation (7), (8), (9) and in-
cluding the condition of A-periodicity on the functions ( )2

ijklθ z  

 ( ) ( ) ( ) ( ) ( )1 : ,         ,   =1,2II II
b i b b i b b i b i

* * C i+ − = + − + ∈u z v u z u z v u z z v zκΘ , (11) 

1Θ  being the third order tensor having components ( )1
iklθ z .  

The boundary conditions referred to the vertical side 1C  and horizontal side 2C  are written 
in components in the following form, respectively: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1
1 1 1 1 11 1 111 12 1 112 21 1 211 22 1 221

1 1 1 1
2 2 2 2 11 2 112 12 2 122 21 2 212 22 2 222

,

,

II II
i i i i i i i i

II II
i i i i i i i i

* *

* *

u z u z u z u z d d d d

u z u z u z u z d d d d

κ κ κ κ

κ κ κ κ

+ − + − + + + +

+ − + − + + + +

− = − + θ + θ + θ + θ

− = − + θ + θ + θ + θ
 (12) 

where the notation 2    1 2i iz d , i ,± = ± =  and ( )1 1
hkl hkl iz+ +θ = θ  is assumed.   

The corresponding micro-displacement field ( )IIu z  is obtained by a FE analysis of the 
unit cell under the assumption =E 0  and κ  homogeneous in the unit cell. Each displacement 
functions ( )2

iklpθ z  is obtained from the displacement field ( )II
iklpu z resulting by the FE analysis 

of the unit cell with prescribed non-zero component 1klpκ = , as follows 

 ( ) ( ) ( ) ( )( )2 1 11
2

II
iklp iklp ik l p ikl p ikp lu z z z zδθ = − + θ + θz z z z , (13) 

being the fluctuation ( )1
ijkθ z  known from the first-order homogenization.  

The elastic moduli of the second-order continuum are evaluated in the unit cell with refer-
ence to the macro-strain vectors { }T

11 22 12 21E H H H H= + and 

{ }T
111 222 122 211 121 212 112 221κ κ κ κ κ κ κ κ κ= . The Hill-Mandel macro-homogeneity 

condition is applied M m=E E , where ME  is the macro-strain energy at a point y of the ho-
mogenized continuum written in the following quadratic form 

 ( ) { }T T
T

1
2M ,

C Y E
E E

Y S
κ κ

κ
=

⎡ ⎤ ⎧ ⎫
⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

E . (14) 

In equation (14) C , Y  and S  are the sub-matrices of the second-order elastic stiffness matrix 

written according to the constitutive equations (4); T1 d
2

m
m

A

C a
A

= ε ε∫E  is the mean value of 

the micro-strain energy over the unit cell. According to the multi-scale kinematics here con-
sidered the micro-strain field { }T

11 22 122ε = ε ε ε  in the heterogeneous cell may be written 
in the following linear form ( ) ( )EB E Bκ κ=ε +z z , ( )EB z  and ( )Bκ z  being matrices de-
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pending on the functions ( )1
iklθ z  and ( )2

iklpθ z , i.e. on the microstructure of the unit cell. As a 
consequence the mean value of the micro-strain energy turns out to be a quadratic form in the 
variables E , κ  and may be compared with the macro-strain energy (14) in order to obtain the 
sub-matrices 

 T T T1 1 1d ,    d ,    dE m E E m m

A A AA A A
C B C B a Y B C B a S B C B aκ κ κ= = =∫ ∫ ∫ . (15) 

The matrices C  and S  are symmetric and because of the symmetry of the second-gradient 
strain ijk ikjκ κ=  the additional symmetries are obtained: 5 7i iS S= , 6 8i iS S= , 5 7i iY Y=  and 

6 8i iY Y=  , 1,...,8i = .  In general, the stiffness matrix of the second-order elastic plane model is 
characterised by 45 elasticities (matrix C  - 6 elasticities, matrix S - 21 elasticities, matrix Y -
18 elasticities). In the case of centro-symmetric unit cell one obtains 0Y =  and the first order-
strain and the second-order strain are uncoupled. 

Finally, the constitutive equations are written in the matrix form M CE YE κ∂Σ = = +∂
E , 

TM Y E Sκκ
∂µ = = +∂
E , being the stress vectors written in the form { }T

11 22 12Σ = Σ Σ Σ  

and { }T
111 222 122 211 121 212 112 221µ = µ µ µ µ µ µ µ µ , respectively.  

4 IN-PLANE DISPERSIVE WAVES IN PERIODIC MASONRY 
The homogenization technique presented in the previous Section allows to analyse the in-

plane wave propagation in a masonry wall. Let us consider the wave propagation along the 
orthotropy direction βe , with 1,2β = , represented at the macro-scale by the component of the 

displacement vector ( ),U y tα β  with 0Uγ ≡  where , , 1, 2α β γ =  and α γ≠  (see figure 3). 
The equation of motion of a second-order continuum is specialized to the case of an 
orthotropic material that is equivalent to a heterogeneous periodic material characterized by 
centro-symmetric unit cells and from equation (6) is written in the form 

 ( ), , ,MC U S U U J Uβαβα α ββ αββαββ α ββββ α ββ α ββ− = ρ − . (16) 

By noting that ˆ
M

c Cα
β βαβα= ρ  denotes the velocity of the longitudinal ( )α β=  and 

transverse ( )α β≠  waves along direction βe  in a corresponding Cauchy continuum 

( S Jαββαββ ββ= = 0  in equation (16)), S Cα
β αββαββ βαβαλ =  denotes the extensional ( )α β=  

and shearing ( )α β≠  characteristic length of the masonry bond as shown in [15], and 
2J dββ η= , being d the cell size and η  a parameter that depends on the geometrical and me-

chanical properties of the cell, the displacement equation of motion may be written in the 
form 

 ( )2 2 2
, , ,ˆ ˆc U c U U d Uα α α

β β α ββββ β α ββ α α ββηλ − = − . (17) 

To evaluate the dispersion functions, the solution of equation (17) is considered having the 
form ( ) ( ), expU y t A i ky tα β β⎡ ⎤= −ω⎣ ⎦ , where 2 1i = − , k is the wave number and ω  is the an-
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gular frequency. The wavelength and the phase velocity of the in-plane waves along direction 
βe  are 2 kπλ =  and c kα

β = ω , respectively. The dispersion function corresponding to the 

longitudinal ( )α β=  transverse ( )α β≠  oscillatory motion of the derived equivalent contin-
uum takes the following form 

 
( )
( )

222 2

22 2 2

1 41
ˆ ˆ

1 1 4

k
kc kc

d k d

αα
ββα α

β β

π

η π η

+ λ λ+ λ
ω = =

+ + λ
, (18) 

that depends on the wave number k. From equation (18) it results that for large wavelengths 
( )λ →∞  the angular frequency tends to the value related to the standard continuum, i.e 

ˆkcαβω→ . 

                                     
 

Fig. 3   Shear wave propagation along the orthotropy direction e1. 

 

5 NUMERICAL EXAMPLES 
The computational homogenization procedure described in the previous Sections has been 

applied to the in-plane analysis of both running bond and English bond masonry. In both 
cases the bricks and the mortar are assumed elastic and isotropic in order to assess the 
reliability of the procedure and to analyze the propagation of elastic waves. The two steps of 
the homogenization procedure are carried out by a FE analysis of the unit cell and the overall 
elastic moduli of the second-order equivalent continuum model are obtained for different 
stiffness ratios b mE E , being bE  and mE  the Young’s modulus of the brick and the mortar, 
respectively. Moreover, the unit cells analysed for the two considered masonry patterns are 
characterized by orthogonal axes of symmetry 1z  and 2z , so that the constitutive equations of 
the equivalent second-order continuum are orthotropic. The propagation of shear waves along 
the two axes of orthotropy 1z  and 2z  of the considered masonry bonds is analysed assuming 
the ratio 10b mE E =  between the brick and the mortar Young modulus, respectively. 

5.1 Running bond masonry 
The considered running bond masonry having the unit square cell shown in figure 1.b is 

analysed. The brick dimensions are 120mm x 60mm and the mortar thickness is 10mm; the 
unit cell size is 130mmd = .  The constituents are assumed isotropic, perfectly bonded and in 
plane stress condition. The Young’s modulus 500MPamE =  of the mortar is assumed and for 

0 1e

2e
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both the constituents equal Poisson ratios are assumed 0.1m bν ν= = . The elastic moduli of the 
homogeneous equivalent continuum have been evaluated for increasing values of the Young 
modulus of the bricks ( 310 10b mE E= ÷ ) in order to appreciate the effect of mismatch in the 
elastic moduli of the constituents. The mass density for bricks and mortar are 

31600 kg mbρ =  and 31500 kg mmρ =  respectively. The mass density at the macro-scale 

Mρ  and the inertia tensor components 11J , 22J  take the following values: 31585 kg mMρ = , 
2

11 1406 mmJ = , 2
22 1410 mmJ = . The elastic moduli  obtained by the standard first-order 

(Cauchy) homogenization (first step of the homogenization) are given in Table 1. The elastic 
moduli S , obtained in the second step of the homogenization for the second order continuum 
are given in Table 2. 

 

Tab.1  Elastic moduli - first order (Cauchy) homogenization ijhkC  ( )MPa . 

bE 1111C  2222C 1122C 1212C  
10 mE  2.763E+03 2.013E+03 1.794E+02 8.186E+02 

210 mE  6.194E+03 2.997E+03 1.587E+02 1.169E+03 
310 mE  7.136E+03 3.155E+03 1.287E+02 1.227E+03 

 

Tab.2  Elastic moduli - second order homogenization ijhkpqS  ( )N . 

bE  111111S 222222S  122122S 211211S 121121S  212212S

10 mE  3.326E+04 1.912E+02 9.304E+04 3.778E+05 1.089E+06 5.682E+05
210 mE  8.978E+04 6.827E+01 2.662E+05 1.959E+06 2.495E+06 7.483E+05
310 mE  1.127E+05 1.077E+01 3.139E+05 2.687E+06 2.942E+06 7.847E+05

 

bE  111122S 111212S  222211S 222121S 122212S  211121S

10 mE  2.707E+04 1.669E+04 -5.686E+01 9.817E+01 -9.506E+04 1.922E+05
210 mE  5.992E+04 3.478E+04 -4.069E+02 -1.401E+02 -2.165E+05 6.907E+05
310 mE  5.720E+04 4.707E+04 -1.249E+02 6.976E+01 -2.377E+05 8.376E+05

 
The characteristic lengths associated to the shear and to extensional strain along directions 

1z  and 2z  take the form 

 

2 1211211 122122
1 1 2 2

1212 1212

1 2111111 222222
1 1 2 2

1111 2222

λ ,   λ ,   

λ ,   λ ,

Sh Sh

Ext Ext

S S
C C

S S
C C

− −

− −

= λ = = λ =

= λ = = λ =

 (19) 
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respectively, and the numerical values for the considered unit cell are given in Table 3. In 
Table 3 it is observed that when decreasing the stiffness mismatch between the brick and 
mortar b mE E , the characteristic lengths associated with one-dimensional shear and 
extensional problems tend to zero. 

Tab.3 Characteristic lengths ( )mm  of the homogeneous second-order model. 

bE  1λSh−  2λSh−  1λExt−  2λExt−  
10 mE  21.5 10.7 3.5 0.31 

210 mE  40.9 15.1 3.8 0.15 
310 mE  46.8 16.0 4.0 0.06 

 
The shear dispersive waves along directions βe , 1, 2β = , for 10b mE E = are described in 

terms of the dispersion functions. The diagrams representing the dimensionless dispersion 
2
1̂d cω  as a function of the dimensionless wavenumber kd  are shown in figure 4 (red line 1e  

propagation, blue line 2e  propagation) and compared with the corresponding one referred to 
the first-order continuum (black straight line). The group velocity 2

1̂gc cα
β−  and the phase ve-

locity 2
1̂c cα

β  as functions of the wavelength are shown in figure 5, respectively.  Unlike the 
first order continuum (Cauchy), where the frequency is proportional to the wave number, dis-
persive waves propagate in the second-order equivalent continuum with phase velocity cαβ  

and group velocity d
dgc
k

α
β

ω
− =  which differ at different wave numbers. In the Running bond 

pattern an appreciable difference between the results provided by the equivalent second-order 
continuum and the corresponding ones by the standard Cauchy continuum are observed in the 
diagrams of figures 4 and 5. For wavelength λ 5d=  from the diagrams in figure 5 one obtains 

2 2
1 1̂0.85gc c− ≈  and 2 2

1 1̂0.94c c≈ . 
 

 

Fig. 4  Dimensionless dispersion functions. Red line e1 propagation, blue line 
e2 propagation; black line: first-order continuum. 

kd

2
1ˆ
d

c
ω

first order model

second order model
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Fig. 5  Group and phase velocities. Red line e1 propagation, blue line e2 
propagation; black line: first-order continuum. 

5.2 English bond masonry 
The English bond masonry having the rectangular unit cell shown in figure 6, with sides 

1 260mmd = , 2 140mmd = , is considered. The brick dimensions are 250mm x 120mm x 
60mm and the mortar thickness is 10mm. The constituents are assumed isotropic, perfectly 
bonded and in plane stress condition; the Young modulus 500MPamE =  is assumed for the 
mortar and equal Poisson ratio is assumed 0.1m bν ν= =  for both the constituents. The elastic 
moduli of the homogeneous equivalent continuum have been evaluated for increasing values 
of the Young modulus of the bricks ( 310 10b mE E= ÷ ). The mass density for bricks and mor-
tar are 31600 kg mbρ =  and 31500 kg mmρ =  respectively. The mass density at the macro-
scale Mρ  and the inertia tensor components 11J , 22J  take the following values: 

31581 kg mMρ = , 2
11 5625 mmJ = , 2

22 1638 mmJ = . The elastic moduli  obtained by the 
standard first-order (Cauchy) homogenization (first step of the homogenization) are given in 
Table 4. The elastic moduli S , obtained in the second step of the homogenization for the sec-
ond order continuum are given in Table 5. Moreover, the characteristic lengths associated to 
the shear and to extensional strain along directions 1z  and 2z  (see relation (19)) for the con-
sidered unit cell are given in Table 6.  

 

 

Fig. 6   Unit cell for English bond patterns. 
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Tab.4  Elastic moduli  first order (Cauchy) homogenization ijhkC  ( )MPa . 

bE 1111C  2222C 1122C 1212C  
10 mE  3.101E+03 2.125E+03 1.911E+02 8.756E+02 

210 mE  8.799E+03 3.239E+03 1.757E+02 1.279E+03 
310 mE  1.112E+04 3.422E+03 1.345E+02 1.346E+03 

 

Tab.5  Elastic moduli second order homogenization ijhkpqS  ( )N . 

bE  111111S 222222S  122122S 211211S 121121S  212212S

10 mE  1.022E+05 1.905E+02 7.147E+04 8.394E+05 1.641E+06 2.647E+06
210 mE  5.177E+05 3.001E+02 2.041E+05 4.486E+06 5.373E+06 3.821E+06
310 mE  7.782E+05 4.287E+01 2.436E+05 6.179E+06 7.385E+06 3.999E+06

 
 

bE  111122S 111212S  222211S 222121S 122212S  211121S

10 mE  3.760E+04 2.795E+04 -1.831E+01 -1.216E+02 -2.495E+05 4.454E+05
210 mE  1.083E+05 7.246E+04 -4.107E+03 -1.832E+03 -6.113E+05 1.947E+06
310 mE  1.096E+05 1.125E+05 -1.497E+03 1.977E+01 -7.059E+05 2.396E+06

 

Tab.6 Characteristic lengths ( )mm  of the homogeneous second-order model. 

bE  1λSh−  2λSh−  1λExt−  2λExt−  
10 mE  31.0 9.0 5.7 0.30 

210 mE  59.2 12.6 7.7 0.30 
310 mE  67.7 13.5 8.4 0.11 

 

The diagrams representing the dimensionless dispersion 2
2 1̂d cω  as a function of the di-

mensionless wavenumber 2kd  are shown in figure 7 for 10b mE E = ; the group velocity 
2
1̂gc cα

β−  and the phase velocity 2
1̂c cα

β  as functions of the wavelength are shown in the dia-
grams of figure 8. From these diagrams a remarkable difference between the results provided 
by equivalent second-order continuum and the corresponding ones from the standard Cauchy 
continuum are observed. For wavelength 2λ 5d=  one obtains 2 2

1 1̂0.65gc c− ≈  and 2 2
1 1̂0.85c c≈ .  



A. Bacigalupo and L. Gambarotta 

 13

 
Fig. 7  Dimensionless dispersion functions. Red line e1 propagation, blue line 

e2 propagation; black line: first-order continuum. 

 

 

Fig. 8  Group and phase velocities. Red line e1 propagation, blue line e2 
propagation; black line: first-order continuum. 

6 CONCLUSIONS  
The in-plane static and dynamic response of elastic periodic masonry is analyzed on the 

basis of a second order homogenization technique that is developed by considering an en-
hanced representation of the micro-displacement field at the brick scale in terms of the macro-
kinematics at the structural scale. This kinematical micro-macro framework guarantees the 
continuity of the micro-displacement field in the representative unit cell and across the inter-
faces between adjacent unit cells. A computationally efficient procedure is developed which is 
applied in two steps: the first step corresponds to the standard homogenization, while the sec-
ond step, that is based on the results of the first step, completes the second-order homogeniza-
tion. Moreover, it is shown that in the equivalent second-order model dispersive waves 
propagate. 

Running bond and English bond masonry are analysed in the examples to illustrate the ca-
pabilities of the homogenization techniques. The overall elastic moduli and the characteristic 
lengths of the second-order equivalent continuum are obtained by the computational homog-
enization carried out by the FE analysis of the unit cell and the effects of the stiffness mis-
match between the brick phase and the mortar phase are considered.  
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Finally, it is shown that for wavelengths shorter than ten times the average brick unit size 
the propagation of elastic waves in the second-order homogenized model takes place with ap-
preciable differences in the phase and group velocities with respect to the standard Cauchy 
model. 
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