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Abstract. In situ soil remediation requires a good knowledge about the processes that occur in
the subsurface. Groundwater transport models are needed to predict the flow of contaminants.
Such a model must contain information on the material layers. This information is obtained
from in situ point measurements which are costly and thus limited in number. The overall model
is thus characterised by uncertainty. This uncertainty has a spatial character, i.e. the value of
an uncertain parameter can vary based on the location in the model itself. In other words the
uncertain parameter is non-uniform throughout the model. On the other hand the uncertain
parameter does have some spatial dependency, i.e. the particular value of the uncertainty in
one location is not totally independent of its value in a location adjacent to it. To deal with such
uncertainties the authors have developed the concept of interval fields. The main advantage of
the interval field is its ability to represent a field uncertainty in two separate entities: one to
represent the uncertainty and one to represent the spatial dependency. The main focus of the
paper is on the application of interval fields to a geohydrological problem. The uncertainty
taken into account is the material layers’ hydraulic conductivity. The results presented are the
uncertainties on the contaminant’s concentration near a river. The second objective of the paper
is to define an input uncertainty elasticity of the output. In other words, identify the locations in
the model, whose uncertainties influence the uncertainty on the output the most. Such a quantity
will indicate where to perform additional in situ point measurements to reduce the uncertainty
on the output the most.
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1 INTRODUCTION

In recent years, the study of uncertainties in numerical modeling has gained a lot of attention.
Probabilistic and non-probabilistic methods were developed for dealing with scalar parameter
uncertainties. However, scalar parameter uncertainties are not the only kind of uncertainties
influencing numerical models. Often scalar parameter uncertainties represent uncertainties that
have uncertainty on a smaller scale spatial dimension too. The spatial influence of such uncer-
tainties is often neglected, as it is assumed captured by assumptions of uniformity and homo-
geneity. This neglect is not without reasons, for a thorough discretisation of an uncertain prop-
erty over the spatial domain would result in an explosion of independent uncertainties and thus
a drastic increase in the computation time for the uncertainty analysis. However, a go-between
approach is possible when certain patterns describing the spatial behaviour of an uncertainty
are available. Taking into account the patterns reduces the explosion of uncertainties in going
from one spatially uniform uncertainty to a thorough discritisation of the spatial domain. The
authors have developped an interval field approach [1] to formalize these notions.

The paper first presents the general problem of interval finite element analysis and the inter-
val field approach to it. Secondly, a section details the choice of certain spatial patterns in the
interval field approach, based on random field analogies. Next, the concept of input uncertainty
elasticity of the output is introduced in the context op spatial uncertainties. In the next section
the geohydrological problem is introduced and the obtained results are presented. The paper
concludes with some suggestions for further research.

2 INTERVAL AND INTERVAL FIELD ANALYSIS

This section first describes the general concept of Interval Finite Element (IFE) analysis
and the method used to deal with it. Next the interval field concept is introduced to deal with
dependent uncertain quantities.

2.1 Interval Finite Element analysis

Generally an IFE problem can be represented by [2]:

ys = {y | (x ∈ xI)(y = f(x))} (1)

with xI the interval vector representing the bounds on the input uncertainties and f(x) the func-
tion representing the input-output relationship. The solution is expressed as a set ys, rather than
an interval vector yI to stress that certain value combinations of components within a hyper-
cubic approximation of the uncertain vector result y are not necessarily physically coherent.
However in most cases the individual ranges of only some components of y are really of in-
terest. Several implementation strategies for interval numerical analysis have been proposed.
Because global optimisation based strategies yield physically correct results, they are more
and more acknowledged as the standard approach for non-intrusive IFE analysis. The core of
this analysis (the f(x)) is a black-box FE calculation which can roughly be any analysis (for
example a static or dynamic structural analysis, but also a heat-conductivity problem, hydroge-
ological problem or vibro-accoustic problem), limited only by the capabilities of the FE solver.
The global optimisation based solution strategies actively search in the non-deterministic input
interval space for the combination that results in the minimum or maximum value of an output
quantity. In theory, the global optimisation approach results in the exact interval vector.

However, despite the smooth behaviour of typical objective functions, the computational cost
of the global optimisation based approach remains high. Hence, most research on this method

2



Wim Verhaeghe, Wim Desmet, Dirk Vandepitte, Ingeborg Joris, Piet Seuntjens and David Moens

focuses on fast approximate optimisation techniques. The approximating technique used in
this paper starts by building a Kriging response surface based on a number of initial sample
points. From this preliminary response surface the optimal additional samples are determined
by focusing on the location of the possible extremes of the approximated output quantity in the
uncertainty space [3]. The response surface is thus improved by additionally sampling the core
FE-model till a pre-specified maximum number of samples are taken. Subsequently, global
optimisation and anti-optimisation is performed on this response surface model to yield the
bounds on the considered output quantity. For a thorough discussion of this adaptive response
surface optimisation method, the interested reader is referred to [4].

For completeness the extension of an interval number to a fuzzy set is presented. A fuzzy set
[5] is a set in which every member has a degree of membership, represented by the membership
function µx(x), associated with it. If µx(x) = 1, x is definitely a member of the fuzzy set. If
µx(x) = 0, x is definitely not a member of the fuzzy set. Analysis using fuzzy sets is very often
done by using so-called α-cuts. An α-cut contains all the x for which µx(x) > α is true. These
α-cuts are essentially classical intervals, which means that the interval analysis is the basis of a
fuzzy analysis.

2.2 Interval fields

The interval field framework as developped in [1] has an explicit and an implicit implemen-
tation. For the application presented here the explicit implementation is needed.

For a spatially dependent uncertainty, the interval vector xI containing an independent in-
terval component for every spatial location is not a realistic description. Furthermore, it would
result in an infeasibly high dimensional optimisation problem. To describe spatially dependent
variation, numerical modelling approaches often use some type of shape functions (e.g. the
modes used to represent the dynamic behaviour of a structure using the modal superposition
technique). The actual solution is a linear combination of these shape functions.

Accordingly, the explicit interval field xF is defined as a superposition of nb base vectors ψi

using interval factors αI
i :

xF =

nb∑
i=1

αI
x,iψx,i (2)

The base vectors represent a limited set of reference patterns over the spatial domain, each of
which is scaled by an interval factor. The components of the interval fields themselves (the
local value of the uncertainty) are coupled through the reference patterns. Once the reference
patterns are chosen, the definition of the interval field requires the specification of the interval
factors that define the field on x, which can be assembled in a classical (hypercubic) interval
vector αI

x. In matrix notation, the interval field is denoted as:

xF = [ψx]αI
x (3)

The application of an explicit interval field on the input side of an analysis is rather straight-
forward. Since expert knowledge about the modelled system dominates the definition of the
uncertainties, the freedom in choosing the base vectors is ideal to reflect this knowledge (for
example: the sinusodal (= base vector) deviation of the thickness of a rolled plate with uncer-
tain amplitude (= interval factor)). The main limitation of the explicit interval field is that its
definition only allows a linear relation between the base vectors and the interval factors.

The application of an explicit interval field on the output side of an analysis is less straightfor-
ward. The base vectors and interval factors are determined by the analysis itself. Furthermore,
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in order to obtain an explicit interval field that introduces no conservatism in its derived re-
sponse variables (i.e. derivatives of the primary response variables), the output interval factors
should be completely independent. An analysis of the application of the interval field approach
to the output of static FE analysis is presented in [6].

Once the spatially dependent uncertainty on the input side of an analysis is defined by means
of an explicit interval field, the dimensions of the uncertainty space are drastically reduced.
This allows for the use of the adaptive response surface technique as described in the above
subsection.

3 THE CHOICE OF BASE VECTORS

The use of the explicit interval field on the input side of an analysis requires the selection of
appropriate base vectors and interval factors. This section first presents the factors influencing
the selection of these base vectors and interval factors. The choice for base vectors and interval
factors based on random field expansions is explained in the next subsection.

3.1 Factors influencing the choice of base vectors

• The bounds on the uncertainty on a model parameter x are specified by two functions
of the spatial coordinate r, one function for the upper bound x(r) and one for the lower
bound x(r) of the uncertainty. The linear combination of the base vectors with the interval
factors that makes up an interval field must remain within these bounds for any value of
the interval factors.

• The base vectors must represent the expert’s knowledge of the spatial dependency of the
model parameter. Most often knowledge about this dependency is limited and the set of
base vectors preferably allows for a range of small and large scale dependency.

• The number of base vectors and corresponding interval factors to represent the input
uncertainty will influence the calculation time to get the output uncertainty.

3.2 Base vectors derived from random field expansion

In an attempt to construct a base vector set that takes into account the above described factors,
the expansion of a random field is studied.

The objective of a random field is to represent a spatial variation of a specific model property
by a stochastic variable defined over the region on which the variation occurs [7]. A random
field can thus be denoted as H(r, θ) with r the spatial coordinate and θ the outcome of a ran-
dom phenomenon. A random field is a random variable for a given r0 and is a realization of
the field for a given θ0. The specification of a random field generally comes down to the spec-
ification of the spatial evolution of the first two statistical moments of the field variable and a
corresponding covariance function, expressing the spatial dependency of the field variable. In
most cases the random field is considered to be weakly stationary, resulting in a constant for the
first few statistical moments throughout the spatial domain (i.e. zero mean and unit variance).
Furthermore the covariance function for weakly stationary random fields depends only on the
distance between observation points, not on their actual location.

The application of the concept of random fields in a numerical modelling framework requires
some sort of discretisation of the spatially varying stochastic field over the defined geometry. A
good overview of methods can be found in the report by Sudret and Der Kiureghian [8]. The
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technique studied here is the Karhunen-Loève expansion [9] that has gained particular atten-
tion in literature. This approach is based on the spectral decomposition of the autocovariance
function CHH(r1, r2). The set of deterministic functions over which any realization of the field
H(r, θ0) is expanded is defined by the eigenvalue problem:∫

ω

CHH(r1, r2)ϕi(r2)dωr2 = λiϕi(r) (4)

with ω the spatial domain and i = 1, . . .. Once the eigenfunctions are found the random field
can be expressed as:

H(r, θ) =
∞∑
i=1

√
λiξi(θ)ϕi(r) (5)

with {ξi} a set of orthonormal random variables. In stochastic analysis, this expansion is trun-
cated after N terms to reduce the computational costs.

Several features of the random field expansion can be used in the interval field implementa-
tion after some adaptations. To begin, an off-set function fmid(r) to describe the mid value of
the model parameter throughout the spatial domain is calculated

xmid(r) =
x(r) + x(r)

2
(6)

The eigenfunctions ϕi(r) of the covariance function are then used as base vectors ψi(r) for the
interval field with

ψi(r) = λiϕi(r)|ϕi(r)| (7)

and replacing the orthonormal random variables {ξi} by interval factors αI
i ∈ b−1 1e. These

adaptations make sure that for N → ∞ the interval field will assign a value from the interval
b−1 1e to the model parameter throughout the spatial domain. This unit interval is then scaled
by the difference function

xdif (r) = x(r)− x(r) (8)

describing the actual range of uncertainty on the model paramater for every location in the
model. The description of the model parameter by the interval field is thus

xF = xmid(r) +
N∑
i=1

(λi ϕi(r) |ϕi(r)| αI
i ) (xdif (r)) (9)

With this equation the considerations from the first and last item in the list of influencing factors
is accounted for. Next is the issue of uncertainty about the spatial dependency.

The base vectors taken from the expansion of a random field with a given autocovariance
function only take into account the given correlation length L. In [10] a method is described to
take into account interval correlation lengths with interval fields. Essentially the method relies
on building an interval field description for the base vectors themselves in the correlation length
space using a limited number of autocovariance expansions. In this way the base vectors are
depending on the correlation length and can be calculated by a simple matrix vector product.
The resulting interval field for the model parameter can thus be summarised by

xF = xmid(r) +
N∑
i=1

(λi(L) ϕi(r, L) |ϕi(r, L)| αI
i ) (xdif (r)) L ∈ bLmin Lmaxe (10)
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This approach only introduces one additional interval to represent the uncertainty about the
amount of spatial dependency. The solution strategy to find the uncertainty on the output re-
mains the same, for example a response surface based optimisation and anti-optimisation, with
only one additional dimension in the uncertainty space.

4 INPUT UNCERTAINTY ELASTICITY OF THE OUTPUT

To assess the relative importance of an input uncertainty on an output uncertainty, the concept
of input uncertainty elasticity of the output is introduced in general terms and then applied to
the case of spatial uncertainty.

4.1 General concept

As in economics, an elasticityR is defined as the ratio of the relative change (more precisely,
the derivative with respect to some quantity) in one parameter Y to the relative change in an
other parameter X

RY
X =

∆Y

∆X

X

Y
(11)

Let Y be the range of the uncertain output and X be the range of the uncertain input. The
reduction (i.e. the ∆) on the range of the interval for the input X , will affect the range of the
interval for the output Y to a greater or lesser extent. The relative magnitude of this influence
is described by the input uncertainty elasticity of the output RY

X .

4.2 Spatial uncertainty context

In the context of spatial uncertainty, the influence of an input uncertainty on an output uncer-
tainty has a spatial component. The influence of an uncertain input parameter will depend on
the spatial distribution of its uncertainty. Figure 1 shows in a generic way the influence of the
spatial uncertainty distribution. For an investigated spatial location the amount of uncertainty
xdif (r) is reduced and some sort of coherent distribution of the uncertainty is assumed over the
spatial domain (as illustrated at the top left in the figure). The uncertainty analysis is carried
out for this spatial uncertainty distribution and a resulting uncertainty (an interval) for the out-
put is found (bottom left). By repeating this for other investigated spatial locations, one finds
the combined result which is shown at the right of the figure. It presents the different output
uncertainties for several investigated spatial locations. This data is then used to calculate the
input uncertainty elasticity of the output over the spatial domain. In this context the RY

X is in
particular usefull to identify the spatial location where an input uncertainty influences the out-
put uncertainty the most. In allocating resources to reduce the uncertainty, the spatial location
with the highest RY

X should get priority.
An appropriate selection of the x(r) and x(r) is needed to make a study over the spatial

domain to give a scalar field of input uncertainty elasticities of the output. Important choices to
be made in the selection of x(r) and x(r) to investigate a particular spatial location’s uncertainty
influence are listed below. Figure 2 shows x(r) and x(r) for three cases. The first case, at the
left on the figure, is the reference case. The two other cases illustrate particular choices for x(r)
and x(r) explained in the list below.

Important choices to be made in the selection of x(r) and x(r):

• the magnitude of the reduction of xdif (r) for the investigated spatial location. The second
case in figure 2 shows a reduction of 50% for xdif (0.2), the third case shows a reduction
of 90% for xdif (0.7).
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The amount
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The investigated
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Uncertainty analysis for the 
investigated spatial location

Interval for output

Output 
interval

The investigated
spatial location

Several 
investigated 
spatial 
locations

Figure 1: Concept to determine RY
X in a spatial context

• the magnitude of the reduction of xdif (r) in the local influence zone of the investigated
spatial location. By reducing the amount of uncertainty for the investigated spatial loca-
tion, the amount of uncertainty for the region around the investigated spatial location is
also affected. In this so called local influence zone, a transition from the reduced amount
of uncertainty to the reference amount of uncertainty is needed. In this paper a quadratic
transition is suggested.

• the magnitude of the local influence zone of the investigated spatial location. The second
case in figure 2 shows a zone of influence from −0.1 to +0.1 around the investigated
spatial location 0.2. The third case shows a zone of influence from −0.3 to +0.3 around
the investigated spatial location 0.7.

• the change in xmid(r). If x(r) and x(r) are not changed symmetrically with respect to
xmid(r) in the reference case, then xmid(r) is affected as well. For simplicity this influence
is not presented here.

These notions are explained further in the case study.

5 GEOHYDROLOGICAL CASE STUDY

A geohydrological case study was chosen to apply the above presented techniques. The case
study deals with a groundwater pollution problem where benzene was spilled and is now being
transported in groundwater to a river. To characterize the flow and transport of the benzene
spill, a groundwater flow and transport model was built in HYDRUS3D. First, the problem
together with its uncertainty is described and the results of a fuzzy analysis without taking into
account the spatial dependency are presented. Next, the spatial dependency is introduced and
an investigation of the input uncertainty elasticity of the output is performed.

7



Wim Verhaeghe, Wim Desmet, Dirk Vandepitte, Ingeborg Joris, Piet Seuntjens and David Moens

Figure 2: Choices in the selection of x(r) and x(r)

Material Layer Minimum K Maximum K
1 1.4 2.1
2 8 12
3 3.6 5.4
4 2.6 3.9
5 4 6

Table 1: Intervals for the hydraulic conductivity K [m/day], ordered from top to bottom.

5.1 Problem description

The governing equation for solute transport in groundwater is a convection-diffusion equa-
tion based on conservation of mass. Convection is determined by groundwater flow which is
based on the constitutive equation for variably saturated flow in porous media, called the Darcy
Buckingham equation. For the solute (the contaminant: Benzene) and ground water flow prob-
lem at hand the following input was given:

• FE-model (14661 nodes) for the HYDRUS3D [11] solver (see figure 3). The dimensions
of the problem are 1100 m in the length direction and between 32 and 36.5 m in the
depth direction. In the time domain a period of 11000 days (approximately 30 years) is
calculated. A deterministic run of this model takes 10 minutes.

• Intervals for the material properties, i.e. the saturated hydraulic conductivity K (see table
1) of the five different material layers.

A river is situated at the left side of the domain (see the red ellipse on figure 3) and the two
sources of the contaminant are in the middle of the domain (see the red arrows on figure 3).
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Figure 3: FE-model for solute and ground water flow showing the five different material layers.

The requested output is the concentration of the contaminant over time at the river given the
uncertainties on the material properties.

5.2 Fuzzy analysis without spatial uncertainty

In the first fuzzy analysis, the uncertainty on the material properties is represented by fuzzy
numbers. The hydraulic conductivity of each layer is considered independent and modelled as a
triangular fuzzy number with the given intervals (see table 1) as base and the mid value as the top
of the triangle. In each material layer the hydraulic conductivity is considered homogeneous
through space. Figure 4 shows for example the spatial fuzzy number in blue and a possible
sample of the fuzzy number in red for the hydraulic conductivity of material layer 1. Two types
of fuzzy analyses were performed:

• Reduced Transformation Method (TM) [12] with 5 alpha-cuts, resulting in 161 samples.

• An optimisation on a Kriging response surface (ARSM) [4] that was built using 32 initial
latinhypercube samples and 32 additional samples.

Additionally, a reference Monte Carlo Simulaion using 200 samples was performed at each
alpha-level, based on a uniform distribution within the interval at each alpha-level Figure 5
shows the fuzzy concentration through time for location 11 (at the river, 3 m below the surface).
In blue is the result of the reduced transformation method (5 ∗ 32 + 1 samples); in green is the
result of the optimisation on a Kriging response surface (32 initial + 32 additional samples);
in red is the result of the Monte Carlo Simulation (5 ∗ 200 samples). From these results it is
clear that the TM and ARSM results are close to each other. The MCS result, despite being the
computationally most expensive, does not yield good results for the maxima: the value given
by the TM is an actual solution of the problem (i.e. a genuine sample) and results in higher
maxima. The ARSM has problems identifying the proper minima since it tends to give negative
(non-physical) results.

5.3 Fuzzy analysis with spatial uncertainty

In this fuzzy analysis, only the uncertainty on the hydraulic conductivity in material layer
1 is taken into account. The other hydraulic conductivities are set at their minimal value. To
model the spatial uncertainty for the hydraulic conductivity of material layer 1, the following
assumptions are made:
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Figure 4: The spatial fuzzy number in blue and a sample of it in red for the hydraulic conductivity of material layer
1, assuming homogeneity.

Figure 5: The fuzzy concentration at the river, 3 m below the surface.
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Figure 6: The spatial fuzzy number in blue and the four base vectors for membership level 0 in colours for the
hydraulic conductivity of material layer 1, including spatial uncertainty.

• The upper bound x(r) and lower bound x(r) are given by a constant, namely the maxi-
mum and minimum of the interval given in table 1.

• The base vectors are derived from an exponential autocovariance function

CHH(x1, x2) = e−
|x1−x2|

L (12)

as described in section 3.2. The first four eigenfunctions are used. Since a limited number
of base vectors is used, the upper and lower bound on the uncertainty are not exactly
satisfied throughout the domain. A scaling factor to adjust the maximal possible value of
the interval field in the spatial domain to the requested bounds is applied. For a correlation
length L = 500 m, the resulting base vectors are shown in 6.

To check the influence of taking into account the spatial uncertainty, two analyses (TM and
ARSM) with the non-spatial uncertainty (i.e. uncertain, but homogeneous hydraulic conduc-
tivity of material layer 1) are performed as well. In total, the following types of analyses were
performed:

• non-spatial uncertainty, Reduced Transformation Method (TM) with 5 alpha-cuts, result-
ing in 11 samples.

• non-spatial uncertainty, optimisation on a Kriging response surface (ARSM) that was
built using 6 initial latinhypercube samples and 12 additional samples.

• spatial uncertainty, with correlation length between 500 and 2000 m, optimisation on a
Kriging response surface (ARSM) that was built using 20 initial latinhypercube samples
and 30 additional samples.
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Figure 7: The fuzzy concentration at the river, 3 m below the surface.

Figure 7 shows the fuzzy concentration through time for location 11 (at the river, 3 m below the
surface). The influence of taking into account the spatial uncertainty results in slightly narrower
fuzzy numbers. This suggests that assuming homogeneity for the hydraulic conductivity of
material layer 1 gives conservative bounds on the contaminant’s concentration for the studied
case.

5.4 Input uncertainty elasticity of the output

By performing an additional point measurement to determine the hydraulic conductivity in
one location, the uncertainty on the contaminant’s concentration will be reduced. To determine
the optimal measurement location an input uncertainty elasticity of the output is calculated. The
following assumptions, referring to section 4.2 and figure 8, are made:

• The magnitude of the reduction of the uncertainty for the considered measurement loca-
tion is a design parameter. By selecting a more accurate measurement device, the uncer-
tainty remaining after measurement is a choice of the expert. In figure 8 the influence of
an increasing measurement accuracy on the bounds and the base vectors is shown.

• The magnitude of the reduction of the uncertainty in the local influence zone is an uncer-
tainty. fdif (r) increases from the value at the measurement location to the reference value
at the end of the local influence zone. In the presented analysis a quadratic function of
the distance to the measurement location is chosen.

• The magnitude of the local zone of influence is an uncertainty. What is the extent of the
influence of a measurement in one location on the rest of the spatial domain? Since a
comparison between the input uncertainty elasticities of the output for different locations
is of interest, the magnitude of this local zone of influence is chosen to be a fixed value. In
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Figure 8: The influence of a measurement in the middle of the domain on the bounds of the uncertainty (in blue)
and the base vectors (in colours), with a zone of influence of 330 m to both sides of the measurement location.

Design Parameter Sampled values
Measurement location 110, 330 and 550 m from river
Measurement accuracy 50% reduction and 100% reduction of uncertainty
Uncertain Parameter Range
Extent of influence value chosen is 330 m.
Correlation length b500 2000e m

Table 2: Parameters in the input uncertainty elasticity of the output analysis.

figure 8 the bounds and base vectors for an influence up to 330 m to both sides is shown,
as it is used in the analysis.

• The actual outcome of the measurement gives a value for fmid(r) in the measurement
location. Untill the measurement is done, this is also an uncertainty that influences the
actual bounds on the output uncertainty. In the presented analysis the value of fmid(r) is
considered a constant and unchanged by a measurement.

To summarize: the measurement location and the accuracy of the measurement are design
parameters, whereas the influence of the measurement and the spatial correlation length are
uncertainties. For the influence of the measurement a fixed magnitude is assumed and the
correlation length is modelled as an interval. The values used in the analysis are presented in
table 2. For a choice of the design parameters, the uncertainty analysis was carried out using
the ARSM method with 20 inital samples and 30 additional samples. The results are presented
in figure 9. The bounds on the contaminant’s concentration are presented for location 11 (at
the river, 3 m below the surface) at the end time of the simulation (approx. 30 years) as a
function of the measurement location and the accuracy of the measurement. Based on this
information the input uncertainty elasticity of the output is calculated using equation (11) with
X and Y respectively the range on the hydraulic conductivity and the range on the contaminant’s
concentration. The results are presented in table 3, the reference is the range on the uncertainty
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Figure 9: The results of the uncertainty analysis to determine the input uncertainty elesticity of the output

Measurement location [m] 110 330 550
Measurement accuracy [-]

0.5 0.33 0.10 0.20
1.0 0.21 0.15 0.13

Table 3: The input uncertainty elasticity of the output.

before measurement. From this table 3 it becomes clear that performing an input uncertainty
reduction (i.e. a measurement of the hydraulic conductivity in material layer 1) at 110 m from
the river provides the greatest reduction in uncertainty on the output (i.e. the concentration of the
contaminant at the considered location and time). Furthermore, for this measurement location
increasing the uncertainty reduction from 50% to 100% will not decrease the uncertainty on
the output with the same amount. In other words, a measurement with an uncertainty reduction
of 50% will have a 0.33

0.21
=̃1.5 times higher relative uncertainty reduction on the output than a

measurement with an uncertainty reduction of 100%. For a measurement at 330 m from the
river the inverse is true: the extra effort of reducing the input uncertainty from 50% to 100%
gives a 1.5 times higher relative uncertainty reduction on the output. Based on this information
and knowledge of the actual costs of a measurement campaign an informed decision can be
made concerning where and how accurate to measure.

6 CONCLUSION

From a methodological point of view, the paper introduces interval fields as an easy con-
ceptual tool to deal with spatial uncertainty. The implementation of the interval field based
on correlation length is made possible by deriving certain base vectors from the random field
expansion technique. This allows for taking into account uncertainty on the correlation length.
Furthermore, the concept of input uncertainty elasticity of the output is introduced in a spatial
uncertainty context.
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From an applied point of view, the paper shows the applicability of the interval field to
a geohydrological problem of realistic complexity. The adaptive response surface technique
proves to be very useful in practice. Certainty on the value of the correlation length often is
a problem. The feasibility of dealing with the correlation length as an interval is shown. The
concept of input uncertainty elasticity of the output in a spatial uncertainty context is proven to
be usefull to determine the optimal location of a measurement (i.e. an uncertainty reduction) to
reduce uncertainty on the output.

The support of the Flemish Governement through IWT-SBO project no. 060043: Fuzzy
Finite Element Method is gratefully acknowledged.

REFERENCES

[1] D. Moens, M. De Munck, W. Desmet, D. Vandepitte, Numerical dynamic analysis of
uncertain mechanical structures based on interval fields IUTAM Symposium on Vibration
Analysis of Structures with Uncertainties, Saint Petersburg, 2009.

[2] D. Moens, M. De Munck, L. Farkas, H. De Gersem, W. Desmet, D. Vandepitte, Recent
advances in interval finite element analysis in applied mechanics Proceedings of the first
Leuven Symposium on Applied Mechanics in Engineering LSAME.08, Leuven, 2008.

[3] M. De Munck, D. Moens, W. Desmet, D. Vandepitte, An efficient response surface
based optimisation method for non-deterministic harmonic and transient dynamic anal-
ysis CMES: Computer Modeling in Engineering & Sciences, 47, 119–166, 2009.

[4] M. De Munck, Efficient optimization approaches for interval and fuzzy finite element
analysis PhD thesis, K.U.Leuven, 2009.

[5] L.A. Zadeh, Fuzzy Sets Information and Control, 8, 338–353, 1965.

[6] W. Verhaeghe, A. Rousounelos, W. Desmet, D. Vandepitte, D. Moens, Interval fields to
represent uncertainty on input and output side of a FE analysis Proceedings of ISMA2010
International Conference on Noise and Vibration Engineering including USD2010, Leu-
ven, 2010.

[7] E. Vanmarcke, Random fields: analysis and synthesis MIT Press, Cambridge, 1993.

[8] B. Sudret, and A. Der Kiureghian, Stochastic Finite Element Methods and Reliability: A
State-of-the-Art Report Department of Civil & Environmental Engineering, University of
California, Berkley, Institute of Structural Engineering, Mechanics and Materials, 2010.

[9] R. Ghanem and P.D. Spanos, Stochastic finite elements: a spectral approach Springer-
Verlag, New-York, 1991.

[10] W. Verhaeghe, W. Desmet, D. Vandepitte, D. Moens, Uncertainty assessment in random
field representations: an interval approach Proceedings of the NAFIPS 2011 conference,
El Paso, 2011.

[11] HYDRUS Software package for simulating water, heat and solute movement in two- and
three-dimensional variably saturated media. Dr. M. Sejna, Dr. J. Simunek and Dr. R. Van
Genuchten, PC-Progress s.r.o, Prague, www.hydrus3D.com

15



Wim Verhaeghe, Wim Desmet, Dirk Vandepitte, Ingeborg Joris, Piet Seuntjens and David Moens

[12] M. Hanss, Applied Fuzzy Arithmetic - An Introduction with Engineering Applications
Springer, Berlin, 2005.

16


	INTRODUCTION
	INTERVAL AND INTERVAL FIELD ANALYSIS
	Interval Finite Element analysis
	Interval fields

	THE CHOICE OF BASE VECTORS
	Factors influencing the choice of base vectors
	Base vectors derived from random field expansion

	INPUT UNCERTAINTY ELASTICITY OF THE OUTPUT
	General concept
	Spatial uncertainty context

	GEOHYDROLOGICAL CASE STUDY
	Problem description
	Fuzzy analysis without spatial uncertainty
	Fuzzy analysis with spatial uncertainty
	Input uncertainty elasticity of the output

	CONCLUSION

