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Abstract. Prediction of progressive collapse of buildings under extreme events is one of the chal-

lenges that the civil engineering community must face. The ability to predict progressive collapse 

would enable the identification of deficiencies in the common practice of structural design without 

having to wait for the next extreme event to occur. With such ability, new design strategies and tech-

nologies for progressive collapse prevention could be addressed. 

Progressive collapse prediction, where the capacity of structures for progressive collapse is assessed, 

faces a great number of challenges. In terms of feasibility, it should address the challenge of analyzing 

large scale buildings in all stages of collapse. The complex behavior of buildings during collapse often 

leads to issues of stability of the numerical scheme, hence to the collapse of the analysis prior to the 

actual analysis of collapse. Indeed, the area of dynamics of structures including phenomena expected 

during progressive collapse (e.g. contact, fracture) has been developed to a high level. Nevertheless, 

there is no theory and computational tool that can efficiently predict all stages of progressive collapse 

of large scale structures. 

The Mixed Lagrangian Formulation (MLF) could potentially provide such a theory as well as an ac-

companied efficient, robust and stable numerical scheme. It also considers almost all stages of col-

lapse in a unified manner, thus, almost completes the puzzle of Progressive collapse prediction. The 

missing part of the puzzle, considering fracture in a unified manner, is the aim of this paper. This is 

developed using concepts from Fracture Mechanics for brittle material by using Griffith's theory. This, 

in turn, will lay the foundation for considering more complex models in the future. Additional state 

variables required to model fracture using fracture mechanics concepts are identified. Subsequently, 

appropriate stored energy and dissipation functions, which lead to Griffith's theory, are formulated. 

Once the stored energy and dissipation functions are formulated, Hamilton’s principle is discretized in 

time to lead to an optimization problem at each time step. The solution of the optimization problem 

supplies with the states at the end of the time step. This results in a sound theory as well as an efficient, 

robust and stable numerical scheme for progressive collapse prediction, as supported by the examples. 
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1 INTRODUCTION 

Prediction of progressive collapse of large scale buildings due to natural or man-made ex-

treme events is a major challenge in structural engineering. The main challenge stems from 

the various complex and sudden phenomena that structures experience during collapse. Those 

often lead to the collapse of the analysis prior to the actual analysis of collapse. With theory 

and tools for Progressive Collapse Prediction (PCP), deficiencies in the common practice of 

structural design, in the context of progressive collapse, could be identified without having to 

wait for the next extreme event to occur. With such theory and tools, the efficiency of existing 

design strategies for progressive collapse prevention (e.g. [1] and references therein) could be 

rigorously assessed, and the development of new strategies and technologies could be ad-

dressed. In addition, those tools could be used in forensic engineering or for the design of 

demolition. 

The progressive collapse of the Ronan Point apartment building (England, 1968) and the 

terrorist attacks on the Murrah building (Oklahoma, 1995) and the WTC (New-York city, 

2001) revealed the drawbacks of the traditional philosophy behind the design of structures: 

Buildings are designed to withstand the expected loads with a given performance level, while 

their capacity to withstand collapse due to extreme events remains unknown. This recognition 

has led to the new field of PCP in structural engineering. This field addresses the modeling 

and simulation of buildings up to the prediction of total collapse, where a progressive creation 

of "rubble" of structural mass is expected. This can be initiated by a rather local damage in a 

limited number of structural components. This local damage eventually causes a sequential 

failure of additional components, or a chain reaction, up to collapse. Several phases of behav-

ior can be identified during the progress of collapse. These are elastic behavior, plastic behav-

ior, stiffness and strength degradation, buckling and other geometric nonlinear phenomena, 

fracture, detachment of objects from the structure and impact or contact of structural elements 

with each other. 

Pretlov et al. [2] pointed out that static analysis cannot capture important effects in pro-

gressive collapse. This statement has been verified in numerous occasions (e.g. [3, 4] and ref-

erences therein). Hence, a dynamic approach should be considered. Here, the modeling for 

prediction of progressive collapse can be done at several levels. At the finest level, one can 

adopt micro-modeling, where each of the structural components (beams, columns, etc.) is 

modeled by a large number of solid elements. The Finite Elements Method (e.g. [5]) or the 

Distinct Element Method (e.g. [6]) have been adopted in that context. At the other limit, mac-

ro-modeling of large structural systems, each story or even the whole structure can be used 

(e.g. [7, 8]). Recently, an intermediate approach seems to gain attention in the context of PCP. 

This approach makes use of macro-modeling of different structural components (e.g. [3, 9, 10, 

11 ,12 ,13 ,14]). It combines advantages from the two previous approaches as it is general 

enough to be used for a large spectrum of types of buildings, collapse modes and extreme 

events, while is potentially feasible for large scale structures. Another advanced approach 

combines various scales of elements and is based on multibody models [15]. This efficient 

approach was used for the simulation of collapse considering uncertainty, where a large num-

ber of deterministic analyses is required. 

A crucial issue in most approaches presented above is the time integration schemes they 

adopt. The theoretical basis of those methods cannot provide answers regarding the existence 

or uniqueness of the solutions. Those may be very important in PCP as the complex behavior 

may lead to bifurcations where more than a single solution may exist. In addition, those nu-

merical schemes require very small time steps. This is due to the sudden changes in the re-

sponse of structures expected when fracture or contact occur. In case where those numerical 
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schemes do converge to a solution, it is also not clear whether it is the true physical solution 

of the problem. If the problem does possess bifurcations, it is not clear what solution those 

schemes would follow. Additionally, no approach seems to efficiently cover all stages of pro-

gressive collapse and enable a feasible prediction for large scale structures. 

A new approach for nonlinear dynamic structural analysis, namely the Mixed Lagrangian 

Formulation (MLF), has recently been proposed [16]. MLF was originally developed for the 

analysis of elastic-plastic response while considering geometric nonlinearity. This approach 

lays on a sound theory that may enable the investigation of existence and uniqueness of solu-

tions. It is based on time discretization of Hamilton’s principle [17]. Hence, the computation 

of the response quantities in each time step reduces to the solution of an optimization problem. 

This weak formulation in time leads to a very stable and accurate numerical scheme that al-

lows for large time step sizes, while allowing for sharp changes in its variables. It also re-

quires a small number of iterations within each time step. In much similarity to the 

generalized standard material framework [18], MLF is also based on two scalar functions: 

The stored energy function and the dissipation function. 

MLF has been modified to enable an efficient analysis of large scale 3D buildings [19]. It 

was shown to scale very well with the size of the system analyzed. The theory of MLF and the 

numerical tool have been successfully extended to account for contact analysis by a carefull 

formulation of an appropriate stored energy function [20]. The capabilities of this framework 

have been also extended to account for strength degradation and fracture [21]. This was 

achieved, however, by somewhat deviating from the rigorous MLF and formulating a new 

hybrid implicit-explicit approach. MLF can potentially present a unified approach with a 

strong theoretical background that accounts for all stages of collapse. A more unified ap-

proach to include fracture in MLF, which is the aim of this paper, is the missing part of this 

puzzle. 

Development of such a strong theory that includes all stages of collapse in a unified man-

ner would possibly enable finding the answers to some very important questions regarding 

existence of solutions, their uniqueness, and the sensitivity to perturbations. In addition, the 

numerical schemes stemming from such theory could be provided with assurance regarding 

their convergence and the quality of their numerical solutions. Those numerical simulation 

tools are expected to be efficient, robust and stable while efficiently analyzing large scale 

structures for all stages of collapse. 

The purpose of this paper is to lay the foundations for accounting for fracture in MLF. The 

analysis of large scale structures in all stages of collapse requires a focus on the scale of the 

structural elements (beams, columns, etc.). Thus, macro-modeling is used to avoid infeasible 

computational effort. In this paper, a uni-dimensional brittle element is formulated. This lays 

the foundations to account for fracture in MLF. Formulations of more complex macro-

elements and behavior could then follow, in future research. For that purpose, additional state 

variables are first identified and added to the formulation. In turn, appropriate Lagrangian and 

Dissipation functions are formulated. Those are then used with a discretized version of Hamil-

ton's principal to result an optimization problem in each time step. The solution of the optimi-

zation problem leads to the values of the state variables at the end of the time step. 

2 PROPOSED FORMULATION  

In this section it will be shown that appropriate Lagrangian and Dissipation functions could 

be formulated such that upon their use with the Euler-Lagrange equations, the known govern-

ing equations could be attained. The proposed Lagrangian and Dissipation functions would be 

used in the next section to form a robust numerical scheme. In order to present the concept of 
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the proposed formulation the simplest case of a SDOF system with equal damage in tension 

and compression will be considered first. More general cases will then follow.  

As discussed above, macro-modeling is used to avoid infeasible computational effort. At 

this stage of research, a uni-dimensional brittle element is formulated to lay the foundations to 

account for fracture in MLF. Being an energy based approach, MLF could strongly benefit 

from adopting energy based criteria for fracture. A well-known criterion for fracture of brittle 

materials, for example, is based on Griffith’s theory (e.g. [22, 23]). This criterion states that a 

crack would propagate if the energy to be released by the incremental growth of the crack, or 

energy release rate, is larger than the surface energy of the material. This criterion is incorpo-

rated to MLF by adopting the crack area as an additional state variable in MLF. In turn, ap-

propriate Lagrangian and Dissipation functions are carefully formulated. It should be noted 

that as the purpose of this paper is to lay the foundations for incorporating fracture and dam-

age mechanics concepts in MLF, Griffith's theory is applied here to model damage in both 

tension and compression. 

2.1 SDOF system with equal damage in tension and compression 

In order to account for fracture, this section makes use of a uni-dimensional macro-element 

whose stiffness in both tension and compression depends on a “crack area” variable, a. Modi-

fications will be done in the following sections to account for different behavior in tension 

and compression and MDOF systems. 

Let us consider the SDOF system presented in Figure 1. It is comprised of a mass, m, a 

dashpot having a damping coefficient c and a spring whose stiffness k(a) depends on a “crack 

area” variable, a, in an appropriate manner. Let us also assume that the evolution of the crack 

propagation obeys Griffith’s theory. The aim of this section is to formulate appropriate La-

grangian and Dissipation function such that upon their substitution to Euler-Lagrange equa-

tions one could attain the known governing equations (the equilibrium equation and an 

equation to reflect Griffith’s theory) 

c

p

u

m

( )k a

 

Figure 1: SDOF system with equal damage in tension and compression. 

The proposed Lagrangian and Dissipation functions take the form: 

 2 21 1
( , , ) ( ) ( )

2 2

T
L u u a mu k a u p u g a= − ⋅ ⋅ + −ɺ ɺ  (1) 

 21
( , ) ( ) 2

2
u a cu a aϕ ϕ γ= + +ɺ ɺ ɺ ɺ ɺ  (2) 

 

Where L is the Lagrangian function,  ϕ is the Dissipation function, m is the mass of the sys-

tem, c is the damping coefficient of the dashpot, k(a) is the stiffness of the spring , a is the 

fracture area or damage parameter, u(t) is the displacement of the mass, γ is the surface energy, 

p(t) is the external force exerted on the mass, t is time, a dot represents a derivative w.r.t time 

and ϕ(·) and g(·) convex index functions. Figure 2a presents the function g(·) and Figure 2c 
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presents the function ϕ(·). In these figures a0 is the total cross section area. Their derivatives 

∂g(a)/∂a and ( ) aa ɺɺ ∂∂ϕ are presented in Figures 2b and 2d, respectively. Those will be used 

later on. As can be seen, the function g(·) is zero for values of a<a0 and can take any positive 

value when a=a0. This will later lead to a constraint on a such that a≤a0. The function ϕ(·), on 

the other hand, is assigned with a zero value for aɺ >0 and can take any positive value when 

aɺ =0. This will be required for controlling the propagation of fracture. 

( )g a

a0
a

 

( )g a

a

∂

∂

a0
a

 
(a) (b) 

( )aϕ ɺ

aɺ

 

( )a

a

ϕ∂
∂

ɺ

ɺ

aɺ

 
(c) (d) 

Figure 2: Index functions for the SDOF system with equal damage in tension and compression. 

For the problem at hand, with both the displacement and the crack area as state variables, 

the Euler-Lagrange equations in terms of the Lagrangian and Dissipation functions are given 

as follows: 

 0
d L L

dt u u u

ϕ∂ ∂ ∂  − + = ∂ ∂ ∂ ɺ ɺ
 (3) 

 0
d L L

dt a a a

ϕ∂ ∂ ∂  − + = ∂ ∂ ∂ ɺ ɺ
 (4) 

Upon substitution of the proposed Lagrangian and Dissipation functions to the first of Eu-

ler-Lagrange equations (Equation 3) one could attain the first governing equation as follows: 

 ( )mu k a u cu p+ ⋅ + =ɺɺ ɺ  (5) 

This equation is, obviously, the equation of motion of the system. Substitution of the pro-

posed Lagrangian and Dissipation functions to the second of Euler-Lagrange equations (Equa-

tion 4) leads to: 

 21 ( ) ( ) ( )
2 0

2

k a a g a
u

a a a

ϕ
γ

∂ ∂ ∂
+ + + =

∂ ∂ ∂

ɺ

ɺ
 (6) 

This equation could be brought to the form: 
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( ) ( )

2
a g a

a a a

ϕ
γ

∂Π ∂ ∂
− − − =
∂ ∂ ∂

ɺ

ɺ
 (7) 

where WU E −=Π , EU  is the elastic energy and W  is the work performed by the applied 

loads. That is, Π−  is the complementary energy. This equation controls the crack propagation. 

It is, actually, equivalent to Griffiths theory where in order to increase the length of the crack 

the negative of the derivative of the potential energy, WU E −=Π ,  w.r.t the crack length, 

should be equal to γ2  as will now be demonstrated. 

Let us first consider the case where a<a0. In this case, as can be seen from Figure 2b, a 

value of zero is assigned to ∂g(a)/∂a. Hence, the value of ( ) aa ɺɺ ∂∂ϕ  (from Equation 7) de-

pends on the value of a∂Π∂− as well as on the value of γ2 . As can be seen by Equation 7, 

when γ2=∂Π∂− a  (and a<a0) a value of zero is assigned to ( ) aa ɺɺ ∂∂ϕ . Hence, from Figure 

2d, aɺ  can be equal or larger than zero and fracture can take place. If, on the contrary, 

γ2<∂Π∂− a  (and a<a0) a negative value is required for ( ) aa ɺɺ ∂∂ϕ  so as to satisfy Equation 

7. Hence, from Figure 2d, 0=aɺ  and fracture cannot propagate. The case where γ2>∂Π∂− a  

(and a<a0) cannot be attained since in that case fracture already would have occurred earlier. 

In the case where a=a0 the spring is fully fractured and fracture can no longer propagate. 

This is accounted for in the formulation by using the function g(a) that penalizes values of a 

larger than a0. This is reflected in Equation 7 as ∂g(a)/∂a can take any non-negative value 

(Figure 2b) while ( ) aa ɺɺ ∂∂ϕ  can be assigned with any non-positive value. Hence, Equation 7 

indicates that fracture can no longer propagate. In this case, the spring loses its stiffness. Alt-

hough not necessary, the spring could be removed manually at the end of the time step where 

a reached a0. Note that fracture (or damage) evolution is enabled by considering the term ϕ(·). 
Appearing in the Dissipation function, this term leads to an irreversible process. Hence, frac-

ture (or damage) that is created by increase of area crack cannot reduce even if the force is 

reversed. That is, the crack area variable can only increase. 

 

2.2 SDOF system with different damage in tension and compression 

The model presented in the previous section is now extended to account for different be-

havior in tension and in compression. For that purpose, a tension-only element and a com-

pression-only element are introduced. The former can take only tension forces when the 

relative displacement at its edges is zero while its internal force is zero when the relative dis-

placement is negative (i.e. the element is shortens). The latter can take only compression forc-

es when the relative displacement at its edges is zero while its internal force is zero when the 

relative displacement is positive (i.e. the element elongates). The assembly of the system is 

presented in Figure 3. It is comprised of a mass, a dashpot and two springs in parallel. The 

first spring is connected in series to a tension-only element while the second spring is con-

nected in series to a compression-only element. Thus, different behavior could be modeled for 

tension and compression. Both springs are assumed to depend on “crack area” or damage var-

iables. Although Griffith’s theory was originally proposed for the propagation of cracks due 

to tension, both “crack area” variables in tension and in compression are assumed here to 

evolve obeying Griffith’s theory. 
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Figure 3: SDOF system with different damage in tension and compression. 

The proposed Lagrangian and Dissipation functions take the form: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2

2

1 1 1

2 2 2

1
2 2

2

t t t c c c t c t t c c

t t t c c c

L mu k a u k a u g a g a u u u u pu

cu a a a a

η η

ϕ ϕ γ ϕ γ

= − − − − − − − − +

= + + + +

ɺ

ɺ ɺ ɺ ɺ ɺ

 (8) 

where the subscript t represents variables related to the tension-only system, the subscript c 

represents variables related to the compression-only system, and the convex functions ηt and 

ηc are presented in Figure 4 with their partial derivatives w.r.t their arguments. Those func-

tions would later lead to the tension-only and compression-only behavior. 
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∂
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(a) (b) (c) 

( )c c
u uη −

( )c
u u−

 

( )c cu u

u

η∂ −

∂
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( )c c
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u u

u
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∂
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(d) (e) (f) 

Figure 4: Index functions for the SDOF system with different damage in tension and compression. 

For the problem at hand, with the displacements u, ut and uc, as well as the “crack area” 

variables at and ac, as state variables, the Euler-Lagrange equations are given as follows: 
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η
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∂
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∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + = → −

∂ ∂ ∂

ɺɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ

ɺ

( ) ( ) ( )2
2

t c c
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u
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ϕ
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 ∂ ∂ − − =

∂ ∂ ∂

ɺ

ɺ

(9) 

Here the first equation is the equation of motion while the fourth and fifth equations dictate 

the evolution of the “crack area” variables for the tension and compression springs, respec-

tively. The second and third equations enforce tension-only and compression-only behavior 

on the springs connected to the tension-only and compression-only elements, respectively, as 

will now be demonstrated. 

Let us first note that ( ) ( )/ /t t t t tu u u u u uη η∂ − ∂ = −∂ − ∂ . Hence, from the second of Equa-

tion 9 one could write ( ) ( )/t t t t tu u u k a uη∂ − ∂ = . That is, in the first of Equation 9 one could 

replace ( ) /t tu u uη∂ − ∂  with  ( )t t tk a u . Let us now focus on the second of Equation 9 with 

Figure 4c. As can be seen from Figure 4c, when u<ut a zero value is assigned to 

( ) /t t tu u uη∂ − ∂ . Hence, from the second of Equation 9, ( ) 0t t tk a u =  and the spring force is 

zero. It could also be seen that in that case 0tu =  thus u<0. If, on the other hand, u=ut, a non-

positive value is assigned to ( ) /t t tu u uη∂ − ∂ . Hence, from the second of Equation 9, 

( ) 0t t tk a u ≥  and the spring force is non-negative. It could also be seen that in that case 0tu ≥ . 

A similar argument holds for the compression only system. 

2.3 MDOF system with contact 

The formulation of the previous section is now generalized to MDOF systems. Here, the 

Lagrangian and Dissipation functions are formulated in terms of vectors representing the dis-

placements of the various degrees-of-freedom (DOFs), u, the displacements of the tension-

only and compression-only elements, ut and uc, and the “crack area” variables for the tension-

only and compression-only systems, at and ac, respectively. The proposed Lagrangian and 

Dissipation functions take the form: 

 

( ) ( )

1 1 1
( , , ) ( ) ( )

2 2 2

( ) ( )

T T T

t t t t c c c c

T T T

t c t c

L

g g η η

= − −

− − − − − − +

M K Kɺ ɺ ɺu u a u u u a u u a u

a a B u u B u u p u

 (10) 

 ( ) ( )1
( , ) 2 2

2

T T T

t t c t
ϕ ϕ ϕ= + + + +Cɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺu a u u a a a aγ γγ γγ γγ γ  (11) 

where M is the mass matrix, Kt and Kc are the stiffness matrices of the tension and the com-

pression springs in their local coordinate systems, respectively, T
B  is the compatibility ma-
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trix , C is the damping matrix , p is the external force vector on the DOFs , γγγγt and γγγγc are the 

surface energy vectors (energy threshold values for damage propagation) for the tension and 

the compression respectively, The scalar functions g, η and ϕ were defined in previous sec-

tions for scalar arguments. In the case of vector arguments the sum of the values attained for 

each entry of the vector as the argument is taken (e.g. g(at) = g(at,1)+g(at,2)+···+g(at,n)). 

It should be noted that the displacements of the DOFs are sufficient to define the state of 

all masses. The mass matrix, the damping matrix and the external force vector are defined in 

this coordinate system. Displacements of additional DOFs, however, are required to define the 

state of the system. Those are the displacements of the tension-only and compression-only 

elements. The stiffness matrices are defined in this coordinate system. The functions η, re-

quired to account for tension-only and compression-only elements, compare displacements 

from the two different coordinate systems. Hence, the compatibility matrix, T
B , transforms 

displacements from one coordinate system to the other, is required (can be seen in example 

4.2). 

As the displacements u, ut and uc, and the “crack area” variables at and ac, are adopted 

here as state variables, the Euler-Lagrange equations take the following form: 

 

 

( ) ( )

( )
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c cT c c
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η η
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 ∂ − ∂ −
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 ∂ −
 + =
 ∂


∂ −
 + =

∂
 ∂ ∂∂ + + + =
 ∂ ∂ ∂


∂ ∂∂ + + + = ∂ ∂ ∂

M C

K

K

K
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B u u B u u
u u u p

u u

B u u
u a u

u

B u u
u a u

u

a aa
a u u

a a a

a aa
a u u

a a a

ɺ ɺ

ɺ

ɺ

ɺ

ɺ

γγγγ

γγγγ

 (12) 

As in the previous section, here the first equation is the equation of motion. The second 

and third equations enforce tension-only and compression-only behavior on the springs con-

nected to the tension-only and compression-only elements, respectively. And the fourth and 

fifth equations dictate the evolution of the “crack area” variables for the tension and compres-

sion springs, respectively. 

3 PROPOSED NUMERICAL SCHEME 

In the previous section, appropriate Lagrangian and Dissipation functions have been for-

mulated. It was shown that use of those functions with the Euler-Lagrange equations leads to 

the expected governing equations. Those include the equations of motion as well as the equa-

tions for the evolution of the crack area. The traditional approach would make use of ad-

vanced time discretization schemes to integrate those equations in time at their strong form. 

With those Lagrangian and Dissipation functions at hand, however, another approach could 

be taken using the weak form (in time). That is, those functions could be used with Hamil-

ton’s principal. By discretizing the action integral in time, the value of the state variables at 

the end of the time step may be attained by finding a stationary point of a discrete functional. 
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In some cases, the stationary point is actually a minimum, hence, an optimization problem 

could be attained. This leads to a very robust numerical scheme that allows for sharp gradients 

of the state variables in time. The derivations to follow do not directly apply Hamilton’s prin-

cipal. For the case of an elastic-plastic behavior, however, it was shown [16] that those are 

equivalent to directly applying Hamilton’s principal.  

Let us first write Equations 12 at time i+½ using the central difference approximation: 

( ) ( )

( ) ( )

( ) ( )
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Using the approximation ( ), 1 , , 1 ,
2
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(14) 

 

It could be shown that the set of equations 14 is equivalent to the stationarity conditions on 

the following potential function: 
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Or, equivalently, to the following constrained optimization problem:  
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(16) 

The solution of the optimization problem 16 in each time step results the values of the state 

variables at the end of the time step.  

It should be noted that the attained optimization problem may not be convex thus a single 

local minimum is not guaranteed. Hence, in case of bifurcations the question "which mini-

mum is the one reflecting the behavior of the physical system?" may arise. Here, the insight 

from the physics of the problem is accounted for. Griffith's theory is based on the partial de-

rivatives of energy quantities w.r.t the crack area. That is, Griffith's theory sets a criterion that 

is based on first order conditions at the current state. Hence, the correct solution is the local 

minimum near the current state. For the purpose of finding the solution, a gradient based ap-

proach is to be adopted. In addition, the state at the beginning of each time step should be 

adopted as the initial guess for the solution of the optimization problem at that time step. 

Moreover, a relatively small limit should be adopted to the change in the state vector in each 

iteration of the optimization problem. 

4 EXAMPLES 

4.1 SDOF system 

This example considers the SDOF system presented in Figure 3. The tension spring stiff-

ness is taken here as kt(at)=k0t(a0–at)
n
 while the compression spring stiffness is taken here as 

kc(ac)=k0c(a0-ac)
n
. The following values are assigned to the various parameters: m=1, k0t= 

k0c=2000, a0=1.2, 2γt=2γc=80, c=0. No external load was considered, however an initial veloc-

ity of 15 was accounted for. The example was executed for various values of n, namely n=1, 

2, 3, 4, 5, 10 and 20, to explore the behavior and the stability of the algorithm. The problem is 

solved for a time increment of 10
-3

 and the results are summarized in Figures 5-7. Figure 5a 

presents the displacements of the system with various values of the exponent versus time 
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while Figure 5b presents the velocities. The crack area and tension stiffness versus time are 

presented in Figures 6a and 6b, respectively. Finally, Figure 7a presents the force-

displacement relation for various values of the exponent while Figure 7b zooms on the first 

1.5 time units. 
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Figure 5: (a) Displacement and (b) Velocity of the mass versus time. 
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Figure 6: (a) Crack Area in tension at and (b) “zoom in” of Tension Stiffness kt versus time. 
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(a)                                                                        (b) 

Figure 7: (a) Force-Displacement and (b) “zoom in”. 

It should be noted that, as expected, the area under each of the force-displacement graphs 

(Figure 7), that represents the spring energy, approaches 2γt ·a0 =80·1.2=96  as the crack area 

approaches a0. 

4.2 MDOF system 

This example considers the 2 DOF system presented in Figure 8. This system is comprised 

of a rigid beam of mass m=1 and moment of inertia I=1 mounted on 7 systems of springs. The 

characteristics of all spring systems are identical. Those include a tension spring of stiffness 
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kt(at)=k0t(a0 – at) and surface energy 2γt, a compression spring of stiffness kc(ac)=k0c(a0 - ac) 

and surface energy 2γc, and a linear dashpot with a damping coefficient c.  Here, k0t= 

k0c=2000, a0=1.2, 2γt=2γc=80, c=0 and l=0.2. No external load was considered, however an 

initial angular velocity of 30 was accounted for. 
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Figure 8: Two DOF system for Example 2. 

The stiffness matrices for the tension-only and compression-only systems are given by: 

( )

( )
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2000 1.2 0

0 2000 1.2

t

t

t

a

a

 −
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 −  

K ⋱  
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2000 1.2 0

0 2000 1.2
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c

a

a

 −
 

=  
 −  

K ⋱  

Note that while those matrices look similar, they differ in the crack area variables consid-

ered. The mass and damping matrices, as well as the compatibility matrix, T
B , are given by: 

2 2x=M I  

2 2x=C 0  

1 1 1 1 1 1 1

0.6 0.4 0.2 0 0.2 0.4 0.6

T

T  
=  − − − 

B  

 

The problem is first solved for a time increment of 10
-3

 and the results are summarized in 

Figures 9-12. Figure 9a presents the displacements of the DOFs while Figure 9b presents their 

velocities. Also presented (Figures 10a and 10b, respectively) are the displacements and ve-

locities of the connections of the springs to the beam. In addition, the tension and compres-

sion stiffnesses of the various systems are presented versus time in Figures 11a and 11b, 

respectively. As can be seen, during the first quarter of cycle, two pairs of springs are frac-

tured, two in tension and two in compression. As some energy was required to result fracture, 

it was dissipated from the system. Hence, the total energy of the system reduced to a level 

such that when the direction of the angle was reversed, the potential energy was not sufficient 
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to result fracture. Thus, the resulted system behaves asymmetrically with reduced stiffness for 

rotation in one direction and full stiffness in the other. This is also reflected from Figure 10a 

where the time required to complete a half cycle is different in each direction. 
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(b)                                                                         (b) 

Figure 9: (a) Displacement and (b) Velocity at DOFs versus time. 
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Figure 10: (a) Displacement and (b) Velocity at system points (see Fig. 8) versus time. 
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Figure 11: Stiffness at (a) tension and (b) compression springs versus time. 

Figures 12a and 2b present the force-displacement behavior of system 1 and 2, respectively. 

As can be seen, both spring present a linear relation in compression up to fracture that occurs 

in an instant as expected. Spring 1 fractures at time 0.019 while spring 2 fractures at 

time0.039 The behavior in tension remains linear as those spring systems did not fracture in 

tension. 
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(a)                                                                         (b) 

Figure 12: Force-Displacement at (a) system 1 and (b) system 2 

Finally, a convergence test was conducted. The problem was solved for various time in-

crement values and the displacements and velocities of the DOFs versus time are presented in 

Figures 13a and 10b, respectively. Additionally, the force displacements behavior of system 1 

and 2 in compression are presented in Figures 14a and 14b, respectively. As can be seen, the 

time increment of 10
-3

 is sufficient for convergence. This is very encouraging as the state var-

iables of this problem show very sharp gradients in time. Those usually lead to large sensitivi-

ties. It should also be noted that while the use of a time increment of 10
-2

 leads to inaccuracy, 

the important phenomena are captured by the algorithm. Note also that the theoretical force 

and displacements of each spring at fracture are 678.82 and 0.28284, respectively. Those are 

traced by the algorithm with good accuracy using a time increment of 10
-3

 or smaller. 
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Figure 13: (a) Displacements and (b) Velocities at DOFs versus time for various time increments. 
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Figure 14: Force-Displacement at (a) system 1 and (b) system 2 for various time increments. 
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5 CONCLUSIONS  

• This paper presented a first step towards accounting for fracture in MLF in a unified 

manner through energy based fracture mechanics criteria. This important step shows fea-

sibility of accounting for damage and fracture mechanics concepts in MLF. 

• It was shown that although problems related to damage and fracture may reach bifurca-

tion points, gained insight from the physics of the problem may assist in choosing the 

right path for the evolution of the state variables in time. In the problem at hand, for ex-

ample, the optimization problem attained in each time step may not be convex. Neverthe-

less, insight from the nature of Griffith's criteria assisted in identifying the correct local 

minimum that, in turn, leads to the right path of the evolution in time. 

• Finally, the example problems revealed that relatively large time increments were suffi-

cient for convergence even when sudden fracture (n=1) was considered. This is very en-

couraging and is attributed to the weak formulation in time. 
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