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Abstract. Whereas the wave reflection and refraction at an interface of two continua has been
studied in detail and has become a matter of text books, the wave reflection at an interface of
a lattice and a continuum does not seem to have been systematically studied. The aim of this
development is to close this gap. Two semi-infinite elastic media are considered in contact at a
plane interface. One of these media is modelled using a rectangular network of identical masses
and springs (hereafter called a lattice), whereas the other one is described by the equations of
the classical elastic continuum. The wave reflection at the interface with the classical continuum
is studied assuming that a plane harmonic wave falls from the lattice on the interface. The
reflection coefficients for the reflected compressional and shear waves are found as functions of
the wave frequency and of the incidence angle. It is shown that the reflection at low frequencies
can be made very small by properly choosing the parameters of the continuum. However, the
reflection coefficients inevitably grow with increase of the frequency and can reach the values
close to one. This is to be expected as the classical continuum is capable of approximating a
lattice only at relatively low frequencies.
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1 INTRODUCTION

The dynamic coupling of the discrete and continuum domaingidely used in concurrent
multiscale simulations. The aim of such a coupling is to dase the calculation time. This
is achieved by breaking the computational domain into twaspan the main part, where a
detailed modeling is necessary, a discrete model is adoptedirest of the domain is assumed
to be occupied by a corresponding continuum. Often the rbthis continuum is simply to
serve as non-reflecting boundary or to pass the reflectiams the outer boundaries of the
computational domain. In either case the wave reflectiom fifwe fictitious boundary between
the discrete and continuum domains should be minimizeds iEhthe challenge researches are
trying to cope with. A number of approaches have been inteduo couple discrete and con-
tinuum representations of materials. A coarse-graineccouddr dynamics (CGMD) method
has been proposed by Rudd and Broughton [3], an approach basthe Green’s functions
formalism has been proposed in [4]- [5] to derive the noreotithg boundary conditions. E
[6] and his co-workers contributed on the study of optimatehang conditions, Wagner and
Liu introduced the bridging scale decomposition (BSL) noetlfi/] which was developed fur-
ther by Xiao and Belytschko [8]. However, most of the methedker have limitations in
their application or are often too complicated to implemektoreover, in most approaches
the wave reflections either have not been yet properly sudienultidimensional cases or the
non-reflecting boundary conditions have been introducéglfon 1D case.

In this development a systematic investigation into theewuaflection at the interface of a
square lattice composed of masses and springs and a cléssiazpic continuum is presented.
The parameters of the lattice are chosen such as to asstine tha long-wave approximation
the lattice is reduced to the continuum, with which it is ceap The main aim of this inves-
tigation is to demonstrate the poor ability of the classamitinuum to absorb high-frequency
waves in the lattice. Such demonstration is necessary tvat@the use of generalized con-
tinua at the discrete-continuum interfaces. The promisimyacter of the latter approach has
recently been demonstratedin [9], where it has been shoatithié reflections from the bound-
ary between the 1D chain of masses and springs and a gradigimuwum of the second order
can be eliminated at the entire frequency band.

XDXIXIXIK]

Figure 1: Coupled discrete and continuum domains (left)wade reflection and transmission at the interface
(right).

Two elastic semi-infinite half-spaces in contact are cagreid in this paper (see Figure 1).
One of the half-spaces is described by the equations of motithe classical continuum and an-
other one is modelled using the system of masses and transledéprings that form a so-called
square lattice. It is assumed that the plane harmonic watkerdongitudinal or transversal
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one, propagates in the lattice towards the interface betwee domains. The energy of the
reflected longitudinal and transversal waves is studied fasi@ion of the frequency and the
angle of incidencé, in terms of the energy reflection coefficient.

The paper is organized as follows. First, the governing gguos for the lattice and the
correspondence between the parameters of the lattice ath@ abntinuum in the long-wave
limit are introduced. Thereafter the propagation charéttes of the body waves in the lattice
are derived. The following boundary conditions are introghlt the continuity of forces and
displacements at the interface. Then the equations of mofithe continuum are solved with
the certain boundary conditions and the displacementsiodhtinuum in the form of integrals
are derived. Then the integrals for the displacements ahtegace are evaluated. The system
of boundary conditions is applied to find the amplitudes efrigflected waves. Then the energy
reflection coefficients are introduced. Finally, the resahd conclusions are presented.

2 GOVERNING EQUATIONSFOR THE LATTICE

The inner cell of the square lattice consists of identicadsea)/ and translational springs:
axial k,,; and diagonak;,. The derivation of the equations of motion for the squarikatvith
translational and shear springs can be foundlin [1]. It ismesl that the dynamic behaviour of
the lattice corresponds to that of the isotropic classikasteE continuum in the long-wave limit.
This assumption requires the following relations betwdengarameters of the lattice and of
the continuum(]1]:

M = deh, Razi = 2/{diaa Rdia = hu, 2deia = h(>\ + M)a (1)

wherep is the mass density of the continuurh,and 1 are Lame’s constants of the elastic
continuum,d is the inter-particle distance in the lattice along the axess a parameter of
length in the direction normal to tHe, y| plane. The introduction of this parameter is required
to couple the 2D-lattice with the 3D-continuum. It followsin the equalities (1) that = p in

the continuum that corresponds to such a lattice in the lwage limit.
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Figure 2: Inner (left) and boundary (right) cells of theitzet

We denotex = k.,; = 2kqiq. Then the equations of motion for the inner cell of the lattic
(depicted in the left part of Figute 2) read

Mdttu(xm,n) — I{/4 (_12u§cm,n) + 4u(mm+1,n) + 4u(mm—1,n) + u(wm—l—l,n—l—l) + u(mm+1,n—1)+ (2)

(m—1,n—1) + u(erl,nJrl) + u(mfl,nfl) . u(erl,nfl) . u(mfl,nJrl)

(m—1,n+1) )
+u$ + ux Yy Yy Yy Yy ’
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Mdttu?gm,n) _ I{/4 (_12u?(Jm,n) + 4u?§m,n+1) + 4u?(4m,n71) + u?(Jerl,nJrl) + u?(Jerl,nfl)+

+ug(/m—1,n+1) + uz(/m—l,n—l) o u(wm—l—l,n—l) . ugcm—l,n—i—l) + ugcm—}—l,n—i—l) + ugcm—l,n—l)) )

Hereu{™" (t), u{™™ (t) are the displacements of the cell with the coordinétes, nd).
The mass of the boundary element is taken as a half of the nfidilse owner cell and the
stiffness of the axial springs at a boundary is taker @s(see the right part of Figute 2). The

forcesF,", F;* act on the masses at the interface from the continuum. Thetiegs of motion
for the boundary cell read

1 - m+1,— m+1,—

§Mdttu§Cm’0) = —k/4 (6u§cm’0) _ 2u;m+1,0) _ 2u§£m 10) 4 u(y +1,-1) _ u;, +1,-1) _ (3)
_u:(vm—l,—l) _ u?(Jm—l,—l)) — F™,

1

§Mdttug(/m70) — —KJ/4 (6ug(/m,0) o 4uz(/m,—1) . uz(/m-i—l,—l) + u(xm—i—l,—l) . uz(/m—l,—l)_

xT

gy

We consider first a plane longitudinal incident wave thappigates towards the continuum
domain with the angle of incidende = 6,. Then we have two reflected waves, namely the
longitudinal and transversal ones (see the right part affeld). We introduce the indexésL
andT for the incident, longitudinal and transversal waves. Tierdisplacements in the lattice
read

uim,n) — 6iu.)t (Alefi(mKiJrnKé) + ALefi(meLanyL) + ATefi(ngang)) ’ (4)

u?(Jm,n) — plwt (Ble—i(mK;JrnK;) N BLe—i(meL—nKyL) N BTe—i(ng—an ) :
whereK! = kqsin 6y, kq is a dimensionless wavenumber of the longitudinal wavesgwam-
ber mupltiplied byd, hereafter we will work with dimensionless wavenumbersyl according
to the Snell's lawk! = KL = KT = K,. The angle of reflection of longitudinal waves is then
the same as the angle of incidence aif‘ﬁj: KyL = ko cos 6. We denote the angle of reflection
of transversal waves #s= 0, and wavenumbet = ky. ThenK? = k, sin 6,, KyT = ko cos 05.

The wavenumbek, can be found numerically from the dispersion relation [I]lémgitudi-
nal waves:

4 cos(ko sin 0y) cos(kq cos ) + 2 cos (ko sin 0y) + 2 cos(kg cos ) — 8 + Q* = 0, (5)

where the angle of incidenagg and the dimensionless frequenQy= wd/cr are input data,
cr = m is the shear wave velocity in the elastic continuum. As feidrom the equalities
@), 2?/2 = w*M/k.

The reflection anglé, and wavenumbek, can be found from the dispersion equation for
transversal waves

2 cos(ky sin ) + 2 cos(kq cos fy) — 4+ Q% =0, (6)

with the aid of the relatiot, = kqsin 6,/ sin 6, that follows from the Snell’s law.
The dependence of the wavenumbkysandk, on the frequency? for different incidence
angles is depicted in Figuké 2.
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Figure 3: Wavenumbers of the longitudinal and transversabs versus frequency for different angles of incidence

Substitution of the incident longitudinal (transversafwe into the equations of motionl (2)
allows to obtain the relation between the andy—components of the amplitudes of the dis-
placements. This gives:

By B —/2+3 —cos(K,)(2+ cos(K)))

Dy = —=—2="=
A AL —sin(K,) sin(K[) ’ -
Br  —2/2+3 — cos(K,)(2 + cos(K))))
Dr=—= . —
Arp —sin(K,) sin(K])

In correspondence with the incident wave the foregs F)" are expressed as follows:
F™ = F2(w)exp(—imK, )exp(iwt), Pl = F;(w)exp(—ime)exp(iwt). (8)

Substitution of the displacemenis (4) in the equations dfendor the boundary elemerii](3)
leads to the system of two algebraic equations with fouratdeis, namelyl,, A, F°, F; We
need two more equations to solve the system. They come frerseitond set of the boundary
conditions that provides the continuity of displacementtha interfacey = 0 . This will be
discussed in Section 4.

3 GOVERNING EQUATIONSFOR THE CONTINUUM

Equations of motion of the elastic continuum read [2]

ﬂ (axxux + 6yyux) + (5\ + ﬂ) (axxux + 6yxuy) = Pattum,
- (9)
[t (Ozztty + Oyyuy) + ()‘ + ﬁ) (Ouytis + Oyyuy) = pOuuy,

whereu, andu, are thex—andy— components of the vectorial displacement in the continuum.
We introduce small dissipatiogt A = A + x9,, i = i + x&;. A andy are Lame’s coefficients
and\ = p, as it has been discussed in the previous sedtion (1). Thietogetroduce a small
dissipation will become clear in the course of derivatioth&f response of the continuum.
There is an infinite number of the points of contact betweendiscrete lattice and the
continuum at the interfacg = 0 (see Figuré]l). At each point the forces, Fyf (@) act on
the continuum from the lattice. We assume that there is foutdact area between each mass
of the lattice and the continuum in order to avoid singuilesiin the solution for the classical

5
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continuum (if this were not done, the contact forces would tiw zero). For this reason we
introduce parametér— the half-width of the contact of the continuum and one péetof the
lattice at the interface. We also choose the boundary dondisuch as to assure that the contact
force is independent

b
F
dr = —. 10
{axh (10)

Then the natural boundary conditions at the interface cdoripeulated:

. > FJ .
Oyy (2,0) = — Z 2bth (b—|z—jd]), oy (z,0)=— Z 2bhH(b—|x—jal|),(11)

j=—o0

whereo,, (z,y,t) is the normal stressy,, (z,y,t) is the shear stresg](x) is the unit step
function (chosen for the sake of simplicity)is an integer.

We also impose the correspondence between the stregses, and the forced”, FJ in
the long-wave limit. This can be achieved if we take d/2.

We consider the following displacement representation:

Uy (,y,t) = 0,P(x,y,t) + 0,V (z,y,t), wuy(x,y,t)=0,P(x,y,t) —0,¥(z,y,t). (12)

Then the stresses,, ando,, are related to the displacement potentib/sl in the following
way:

= XDz + 0yy) © 4+ 201 0y ® — 0y V), 0y = 1 (205, ® + 9, ¥ — 9, ). (13)
This representation satisfies the equations of mofibn (9) if

The solutions of the above equations can be found in the form
O(z,y,1) = ¢z, y)e™',  V(z,y,t) = P(z,y)e™". (15)

We substitute[(15) in.(14) an@ (113) in(11), then we apply tkeomential Fourier transform
over the spatial coordinaiedefined as

o' (ky) = [ ol y)de, v (ky) = [ i y)da (16)

and obtain the equations

ayyd)* - Q%Qb* = 07 ayyw* - <72“1/}* =0 (17)

with the boundary conditions at the interfage- 0

A+ 2/1)0,y0" — AK2* + 2jiik0, 0" = — 3 Fei7dKs (eih(Gdit) — cih(Gd=b)) fidhk,
J=—00
(0,07 + K" — 2ik0,07) = — 5. Fle 0K (JMidt) _ ikGiD) fidpk,

j==o00

(18)
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where(, = /k? —w?/é2, (p = k2 —w?/c%, & = A(1 +ix"), c& = A1 +ix), x* =

wx/w; e =/ (AN+2u)/pander = \/;T/p are the compressional and shear wave velocities in
the classical continuum, respectively.

The general solutions of the equatiohsi(17), taking inteanot that the functiong*, *
should have finite values whengoes toxo, can be written in the form

¢"(k,y) = A(k,w)exp(—Cry), ¥*(k,y) = B(k,w)exp(—(ry), (19)
provided that the real parts of the radicals (r are assumed positive.
We find the functionsA(k,w) and B(k,w) that satisfy the boundary conditioris[18). Then

we substitute[(115) td (12) and apply the Fourier transforrthtoresult in order to obtain the
Fourier transforms of the displacements v,

uh = (—ike® + ) = (FOGr(2k2e<tY — ye=sTv) + FOik(2(rCre=sry — ye~<tv)) S,
up = (k" + 0,0") = (FLik(ye St — 20rCre=<r¥) + FO(L(2k2e~ST0 — ye=61v)) S,
(20)
where

%O: pikid (efikb _ pikb
_ =T

idhkp(l +ix )A

The inverse Fourier transform is applied to derive the dispents in the continuum according
to the following relations:

v = 2k? — w2/62T, A =~ — Ak (s (21)

[e.e]

1

17 .
ux(x,y,t):%/e"kmu;(x,y,t)dk, uy(az,y,t):§/e"kmuZ(a:,y,t)dk. (22)

4 COUPLING OF THE DOMAINS

The continuity of forces and displacements is required atbtbundaryy = 0. We have
smeared the contact between the lattice and the continutine aterface to avoid singulari-
ties in the solution for the continuum and this causes theiguntly of the boundary problem
statement.

We assume that the displacements of the masses at the bpumdae lattice are equal to
the displacements of the continuum in the points of contact:

™ =y (md, 0,), wf™™ = u,(md,0,¢t). (23)

Note that one could also equate the displacements in theelaff**?, (™" to the displace-
mentsu,(md, 0, 1), u,(md, 0,t) averaged over the width of the contaét

We substitute the displacements in the lattide (4) inid &®) apply the results of the previ-
ous section. Then the equatiohs](23) transform to the fatllgwquations:

AW g iKam Ofo F)e-ibmd %O: ekide=iKai gl f—1,2,

j=—o00
A'=Ar+ AL+ Ar, A*=A;Dp— ALDy — ArDrp,
(24)

1 _ @R =) PRk —NFy (—ikb _ kb
P kw) = DT Ry — (e T )’

9 _ —ikQrCL N FP+ @R —)CLF) (kb kb
PP k,w) = 2mikdhp(LHix")A * (6 Toe )

7
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Let us multiply the left and the right parts of the equatid®d)(by ¢!*=™ and introducd =
j — m. Then the equations (R4) can be rewritten as follows:

/F<f S K gy (25)

l=—

We divide this equations by, apply the relatiom: = 2./ and introduce dimensionless variables
K =kd, F = F/k/h, by = b/d. After that the equation& (25) take the form

A'Jh = CiFY+ CoF),  A?/h = C3F) + C4F), C3=—Cs. (26)
The coefficients”;, C5, C, should be evaluated:
Cy = W Z il _Z FLKD) K (671Kbdl _ eiKbdl) K,
C,y = W ; o—ilKs Z weill( (e—iKbdl _ eiKbdl) dK, 27)
Cy = W Z il T FLKD) K (671Kbdl _ eiKbdl) K,

—00

whereF = 33\/K2 — B3, Fy = i(2\/K? — B3\/K? — 3} — 2K + B2), Fy = 2,/K? — 5
are symmetric functionsi? = Q*c2/c2 /(1 + ix*), 57 = Q*/(1 +ix*), A = (2K? — B2)* —
4K\ K2 — B3\ /K2 — B3,

It has been checked that the direct numerical calculatidghe$ums of integral§ (27) is very
time-consuming because one has to take a large number ofaimens of summation till the
sum converges. To avoid this we carry out the summation &oally. We rewrite [27) in the
following way:

01(4) = _77ri(141rix*) <l§1 (elle + 671”(“”) _{O 1(}?& ) (elK(bdl*l) + 61K(bdz+l)) dK + 01(4)0> ’

02:_

R (ilKe _ —ilKs) T Fa(K) (i o
wi(l-il-ix*) g (elKl _ oK )J;o Q(A ) (eK(bdl-i-l) K (bg— z)) dK,

X Fw(K) [ ; i ® eiKbgy _
Chio = [ P4x (K0 — e7H0) K =2 [ Figay) g dK.

(28)
The integrands in_(28) are multiple-valued functions beeaof the presence of the radicals.
They become infinite at so-called Rayleigh poles which aeesimple zeros of the equation
A(K) = 0. This equation in the case of zero damping has been examinddtienbach
[2]. There are two real rootsK’ = 4wd/cg = Qcr/cr, Wherecg is the velocity of the
Rayleigh waves. With non-zero damping the roots move todthet and upper half-planes of
the complex planeX = +(g, fr = Qer/cr/(1 + ing). The branch points ar&” = +5;,
K = 4. We apply the contour integration around the poles in omleraluate the following
integrals from[(2B):

J11(4) _ _{O Fl(Iz?iK) eiK(bdl+l)dK7 J‘12( f F1(4) (K IK(bdl_l)dK,

B = ] PEeKeaar, g = [ PR aK, g = [ By (K) <LK,
(29)
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c3

c0 Re(K)

'

Figure 4: Contour of integration in the upper half-plane

The contour of integration and location of singular poimnsjll(4) are depicted in Figurld 4.
The contour for/} and.J, is quite the same with the only exception that these integtalnot
have a pole ak’ = 0. We integrate/7,) and.J7 along the contour in the lower half-plane. The
integration along the circular contouts, ¢2 around the branch points vanishes as their radius
decreases, the integration along the circular contedyrst, ¢5 vanishes ask’| — oo. Thus,

§ p)aK = (/+/+/+/+/+ 7) FIK)AK = 2niRes[f(K), K = —Bs], (30)

where 7’0 is to be understood in the sense of Cauchy principal value pdte X' = 0 was

artificially introduced as the original integral 4 from (24) do not have this pole. In accor-
dance with this fact the integrals around the circular conto in the upper and in the lower
half-planes have the same absolute value but are of the @@ and thus vanish in the sum
Ty + Ty

Im(y/K?2 — 32) = 0 on the contours of integration 1-2 and(lg@2 — B2) = 0 on the
contours of integration 3—4. These equalities hold trudif( K)ReK = «;, i = 1,2, where
ap = Im(B2) = = 2/ /(1 + x*?), ay = Im(B2) = —Q%x*/(1 + x**). The general
representation of at the contours 1-4 i& = a + i /2/a, wherea = Re(K) anda = o4 or
oy are negative. Thugzp(ilK)| = |exp(—a/2/a)| < 1. Now we swap the order of summation
and integration and evaluate the sums frbn (28) as the sugeoofietric progression:

i(KatK) P —Ky)

o ( _ilK. K\ K
; (6 te ) ¢ = 1 — ei(KztK) * 1 — ei(K—Kz)" (31)

In the lower half-plane we havk with the opposite signexp(—ilK)| < 1 and we can apply
the formulae of the sum of geometric progression as well.

The evaluation accomplished in Hg [31) would have been isiplesif no damping were
present in the continuum. that is why it has been introducegkiction 3.

5 THE REFLECTION COEFFICIENTS

The amplitude reflection coefficient is found as the absolakee of the ratio of the complex
amplitudes of reflected and incident waves and is giveRias- | A /A;| for longitudinal wave

9
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and asR; = |Ar/A;| for transversal wave. These coefficients can be found byirepthe
system of four linear equations that constitute the boundanditions. We substitutél(4) and
(8) into (3) and divide the whole equations kyl;. Then we take the equatiors [26) and divide
them byA;/h. Finally, we have the system of four equations:

allfziL + a12AT + Fm = bl, a2112iL —+ CLQQAT + Fy = b27

. N 5 By (32)
AL"‘AT_CIFPv’:E —CQFy = _17 ALDL+ATDT+C3F$+C4F~13/ = DL’
whereArry = Apry /AL Fa) = F?,)/x/A; are the unknowns and
a; = —cos(K,) — 0.250% 4+ 1.5 + 0.5 exp(iK})) (D sin(K,) — cos(K,)),
a1y = —cos(K,) — 0.250% 4+ 1.5 + 0.5 exp(—iK] ) (iDr sin(K,) — cos(Ky)),
ag = Dp(0.250% — 1.5 + exp(—iK}))) 4 0.5 exp(—iK}))(Dy cos(K,) — isin(K,)),
(33)

agy = Dp(0.250% — 1.5 + exp(—iK)) + 0.5 exp(—iK ) (Dr cos(K,) — isin(Ky)),
by = cos(K) 4 0.250% — 1.5 + 0.5 exp(iK ) (iDy sin(K,) + cos(K,)),
by = Dr(0.250% — 1.5exp(iK}))) + 0.5 exp(iK ) (D" cos(K,) + isin(K,)).

The input data for the systemn (32) includes the angle of enidd, and the dimensionless
frequencyf2. The admissible values @f are betweerd andx /2 and that of(2 are betweer
and the cut-off frequencs2. up to which the longitudinal waves propagate.

We consider the flux of energy through the remote area in thiedgarallel to the interface.
The flux of the wave energy is proportional to the square antplitude. The energy reflection
coefficient is found as the ratio of the energy fluxes of refld@nd incident waves and is given
asP, = R? and Py = £RZ%, where

AD7 sin(K)) + sin(K, + K )(2Dr 4+ D7 + 1) sin(K, — K] )(2Dy — D} — 1)

= . (34
¢ 4D7 sin(K[)sin(K, + KF)(2Dy + D7 + 1) +sin(K} — K,)(1 + D7 — 2Dy, (34)
1 9,0.01 057 0,~1/6 transversal 7 0,=n/4 transversal
1 1 longitudinal 1 —— longitudinal
0.8 — 0.4 — 0.8 -
0.6 4 0.3 — 0.6 4
A~ ~
0.4 — 0.2 0.4 -
0.2 0.1 — 0.2 4 AJ
0 T \ \ 10 T T 0 ‘ \ ‘

Figure 5: The energy reflection coefficients for differenglas of incidence
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To demonstrate the results the following parameters foctmtinuum are takerp = 2300
kg/m?, E = 230 GPa. As coefficient = 0.5F/(1+v) should be equal td = vE/(1+v)(1—
2v), the Poisson'’s ratio of the continuumis= 0.25. The damping parametgr=1000 Pasec.
The period of the latticd = 0.05 m. The values of the parametey, = wu*/u = Qerp*/d/u
lie between 0 and 0.02 depending on the frequency

The dependence of the energy reflection coefficie(gither P, or Pr) on the dimensionless
frequency for three different angles of incidence is depicted in Féiffir One can see that there
is almost no reflection at low frequencies, where the contimis capable of approximating the
lattice, and at higher frequencies the reflection growddigais the dispersion properties of the
lattice and the continuum differ a lot. One can also notettiateflection of transversal wave is
less than that of the longitudinal one.The grapl®pfstops at a lower frequency than that/f
as the cut-off frequency of the transversal waves is lowamn that of the longitudinal waves.

1.2
9021 4 —— transversal

—— longitudinal

0.8 —

04—

Figure 6: The energy reflection coefficient

For the angles of incidence that are larger thdd we have obtained non-physical results:
the reflected energy exceeds the energy of the incident wailxs anomalous reflection is
depicted in Figure 6. We do not yet know the genuine explanaif this result. Most likely, it
is a consequence of the boundary conditions at the interface

The case when transversal wave falls on the interface frerfathice has also been examined.
The energy reflection coefficients for different angles afdence are depicted in Figure 7.

14 14 14

1 6,=0.01 | e=w4

0.8 — 0.8 — 0.8 —
0.6 — 0.6 — 0.6 —
=7 B =% 1 =]

0.4 — 0.4 — 0.4 —

0.2 — 0.2 — 0.2 —

o— T 0
o 04 08 12 16 2 0 1 2 30

Figure 7: The energy reflection coefficients for differenglas of incidence
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0,=n/6 —— longitudinal
! transversal

0.8 —

04 —

Figure 8: The energy reflection coefficient

The reflection of the longitudinal waves is negligible witign= 0.01. In the case$, = /4
andd, = 1.4 the longitudinal waves do not reflect.
The anomalous reflection has also been observed in this sasé&igure 8).

6 CONCLUSIONS

The motivation for this study has been to facilitate the dtgwment of the multi-scale nu-
merical approaches that are becoming increasingly populavestigations into the details of
dynamic deformations of various materials. Specificalis paper is envisaged to be of inter-
est for those researchers who employ the discrete-comtimaadels in order to minimize the
huge computational costs associated with the detailededesenodelling. The continuum do-
main in such models is introduced in order to minimize the sizthe discrete domain as much
as possible thereby significantly reducing the computdtioe. To achieve this, however, the
continuum domain should not introduce spurious reflectatress broad as possible frequency
range. In this paper, the capabilities of the classicalinootn have been assessed to comply
with this requirement. To this end, the reflection of planentanic waves at the interface of
the square lattice and the classical continuum has beeredtuilmethod has been proposed to
couple the domains in such a manner that no singularitiesratie to the point-like character
of particles in the lattice. It has been shown that while tlassical continuum can serve as
a non-reflecting boundary for the lattice at low frequenciesannot absorb higher frequency
waves. Moreover, it has been found that due to the ambiguttya formulation of the boundary
conditions at the discrete-continuum interface, the gnefghe reflected waves can be math-
ematically predicted in some cases to be larger that thdtepiricident waves — a result that
is physically unacceptable. Given the above-formulatedilts, it can be concluded that the
classical continuum is not the most desirable model forrasgihe non-reflective conditions
at a wide frequency band. One of the attractive alternative&d be a gradient continuum that,
according to a recent study carried out in the 1D framewofkd&n be expected to match the
lattice at a wide frequency band. Additionally, no singities occur at the contact between a
point load and a surface of a gradient continuum. The autbfdfgs contribution are currently
investigating whether gradient continua will be up to theggectations in the multidimensional
case.
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