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Abstract. Stone masonry spires are vulnerable to seismic loading. Computational methods 
are often used to predict the dynamic linear elastic response of masonry spires, but this ap-
proach is significantly limited to the point when the first masonry joint begins to open. In this 
paper, analytical and computational modeling methods are used to address the full dynamic 
response of masonry spires until collapse. An analytical framework is first presented, which 
addresses both the elastic oscillation response and the rigid rocking response of masonry 
spires. In this context, the seismic response of the spire of the church of St. Mary Magdalene 
in Waltham on the Wolds, United Kingdom, which was damaged in the 2008 Lincolnshire 
Earthquake, is addressed. Both analytical and computational discrete element modeling are 
applied to predict the response to a variety of base accelerations. Results of both methods are 
compared to evaluate their utility and to understand the seismic damage which occurred.   
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1 INTRODUCTION 

Large earthquakes are relatively rare in the United Kingdom, and ensuing damage is often 
limited to unreinforced masonry spires, chimneys and towers. As spires typically top signifi-
cant heritage structures, there are numerous recorded examples of spire damage during histor-
ic seismic events [e.g. 1,2]. More recently, several stone masonry spires were badly damaged 
during the 2008 Lincolnshire Earthquake in the United Kingdom, despite the relatively small 
magnitude of earthquake ground motion. The damage to one such spire, which sat atop the 
13th century parish church of St. Mary Magdalene in Waltham on the Wolds, provides the im-
petus for this research, and will be used as a case study herein. 

The stability of masonry spires under static dead load and wind load was addressed by 
Heyman [3] in the context of ultimate load theory, assuming i) infinite compressive strength, 
ii) zero tensile strength, and iii) no sliding between masonry units. Heyman [3] assumes that 
octagonal spires can be modeled as conical shells, and demonstrates the importance of a solid 
spire tip to resist overturning during high winds.  

The dynamic response and collapse of masonry spires has been given relatively little atten-
tion. Previous studies concentrate on the onset of cracking due to elastic response, rather than 
the prediction of post-damage response and complete collapse. In this study, dynamic re-
sponse is also tackled in the context of rocking structures, for which the literature is extensive. 
Housner [4] provides the fundamental formulation for investigating the rocking response. 
Zhang and Makris [5] provide a critical contribution regarding the response of rocking objects 
to cycloidal pulses which can dominate earthquake ground motions and govern overturning 
collapse. 

The dynamic response of masonry structures can be computationally predicted using Dis-
crete Element Modeling (DEM), which models the contact and separation between individual 
stones within a masonry structure. In particular, DEM was used to model the dynamic rocking 
response of the masonry arches by De Lorenzis et al. [6], with a more in-depth sensitivity 
study of modeling parameters provided by DeJong et al. [7]. These studies demonstrate the 
utility of DEM to evaluate analytical models which capture the governing dynamic response. 

The aim of this paper is to provide a general approach for evaluating the dynamic response 
of masonry spires under seismic loading, and then to evaluate that approach by assessment of 
the damage to the spire of the parish church of St. Mary Magdalene. The general approach is 
presented first, and makes use of an analytical formulation for predicting damage and rocking 
response. Subsequently, DEM is used to evaluate the analytical approach through an in-depth 
computational investigation of the spire in question.  

2 ANALYTICAL FORMULATION 

The analytical approach for modeling the dynamics of masonry spires will be broken down 
into three aspects. First, static analysis will be used to obtain a reference point for lateral sta-
bility. Second, the linear elastic dynamic response will be approximated. Finally, the rigid 
rocking response will be considered. A conical shell is assumed to be representative of the 
octagonal spire, and the three assumptions of ultimate load theory are taken [3]. 

2.1 Static Analysis 

As a starting point, static analysis is useful to determine the minimum horizontal ground 
acceleration (if applied for infinite duration) necessary to cause overturning of a conical shell. 
For the geometry in Figure 1(a), the fraction () of gravitational acceleration (g) required for 
overturning is: 
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 Figure 1: Definition of masonry spire geometry.  

 

 
3 br

H
   (1) 

The conical shell has a relatively low center of gravity (H/3), and is therefore more resis-
tant to overturning than a solid rectangular prism. However, assuming masonry structures 
have no tensile capacity, diagonal cracks may open when lateral loads are applied [8]. In reali-
ty, the location of these cracks may be limited by interlocking of blocks, but assuming that a 
diagonal crack can form at any angle  (Figure 1(b)), the fraction () of gravitational accele-
ration (g) required for overturning is: 
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where hc is the crack height in Figure 1(b).  

2.2 Dynamic Elastic Analysis 

The dynamic response of masonry structures involves two stages: an initial elastic stage, 
during which the entire structure remains in compression, followed by a ‘rocking’ stage, dur-
ing which masonry units separate and regain contact. The elastic stage will be addressed first, 
followed by the rocking stage in the next section.  

Due to the slender nature of spires, Euler-Bernoulli beam theory can be used to estimate 
natural frequencies and mode shapes. The mass per unit height, m(y), and bending stiffness, 
EI(y), of the spire can be written as: 

 
3

( ) 1

( ) 1

b

b

y
m y m

H

y
EI y EI

H

   
 

   
 

 (3) 

x 

y 

H 

rb 

CM 

H/3 

O 

Mcg 

Mcg 

CM 

O 

hc 

R 

 

 

(b) (a) (c) 

 

 



M.J. DeJong and C. Vibert 

 4

 
Figure 2: First two modes shapes of a conical shell [10], and the first mode shape from Equation (5) with k = 2.2.  

 
where mb is the mass per unit height at the base, Ib is the second moment of area at the base, 
and E is the Young’s Modulus.  

Therefore, the mass and bending stiffness vary similarly to the solid wedge beam analyzed 
by Naguleswaran [9], who determined the corresponding natural frequencies: 
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where n = 5.315, 15.21, and 30.02 for the first three modes. The fundamental mode shapes 
for the first two modes are depicted in Figure 2.  

Alternatively, Rayleigh’s principle can be used to estimate the mode shape and compute 
the corresponding natural frequencies. Assume a mode shape of the form: 
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where  x y is the modal translation at height y, and k is a constant. The fundamental natural 

frequency is approximated by: 
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The minimum fundamental frequency 1  occurs for k = 2.2, and the corresponding mode 

shape compares reasonably well with the actual mode shape derived by Naguleswaran [9] 
(Figure 2). Modal analysis using equations (5) and (6) can now be applied to determine the 
point at which elastic oscillation would cause damage and initiate a rocking response. 

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5 1

Mode 1

Mode 2

Mode 1 
(approximate)

y

H

 x y



M.J. DeJong and C. Vibert 

 5

2.3 Dynamic Rocking Analysis 

If the earthquake loading induces a large enough response, the spire would begin to rock as 
it has no tensile capacity, and the elastic natural frequencies would be completely altered. To 
investigate whether rocking could cause collapse, consider a rigid conical shell on a rigid 
foundation. 

The rigid conical shell will begin to rock (Figure 1(c)) when the overturning moment ex-
ceeds the resisting moment, which occurs at a maximum ground acceleration of acrit = g, 
where  is defined in Equation (1) above. Once rocking commences, the response can be 
treated in a similar fashion to Housner [4], assuming spinning of the cone about its vertical 
axis does not occur. The equations of motion are:  
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where M is the total mass of the cone, R, , and  are defined in Figure 1(c), and IO is the 
mass moment of inertia about point O in Figure 1(c): 
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Assuming small angles, equation (7) can be rewritten in the form: 
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where Op MgR I  is the frequency parameter of the block. 

Still following the formulation of Housner [4], the impact can be modeled by a coefficient 
of restitution, cv, defined as the ratio of the angular velocities before and after impact: 

  
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Equations (9) and (10) now describe the response of the conical shell to horizontal ground 
motion in general. However, as ground motion impulses often govern overturning collapse, 
impulse collapse diagrams similar to those presented by Zhang and Makris [5] could directly 
be plotted.  

Finally, the fact that the spire has no tensile capacity must again be considered. Diagonal 
cracking could result in the rocking response of the ‘cracked cone’ in Figure 2(b) about point 
O, where point O need not be located at the bottom corner. The crack could occur further up 
the spire. In this case, equations (7) and (9) could still be used to predict the dynamic response, 
but the impact formulation must be reconsidered. 

3 DISCRETE ELEMENT MODELING 

Discrete Element Modeling (DEM) is a tool which can predict the more detailed response 
of a spire which is actually comprised of numerous separate masonry units. DEM will be used 
to predict levels of damage and collapse to the spire, rather than to predict precise displace-
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ments, which is impossible. In this section, the modeling assumptions are first explained, fol-
lowed by simulation of static, impulse, and earthquake loading. All simulations were carried 
out using 3DEC [10]. 

3.1 Spire Characteristics and Modeling Assumptions 

The spire of the church of St. Mary Magdalene in Waltham on the Wolds, UK (Figure 
3(a)), was badly damaged during the earthquake, after which the top half of the spire was re-
constructed (Figure 3(b)). Construction and survey documents from the dismantling of the 
spire were used to develop an accurate model of the pre-earthquake spire, in which each stone 
is individually considered (Figure 3(c)). All earthquake damage was concentrated above the 
height of the top windows, so only the reconstructed section was modeled. The entire spire is 
19.1 meters tall; the model consists of the top 9.4 meters (Figure 3(d)). The top 3.4 meters of 
spire is solid, with each course tied together by an interior metal rod. This section was mod-
eled as a single rigid block. The average height of each masonry course is 0.3 meters, with an 
assumed average hydraulic lime mortar joint thickness of 1 cm. 

The modeling parameters used for DEM simulations are presented in Table 1. Rigid blocks 
were specified to limit computational time. The joint stiffness kj was calculated by lumping all 
of the stone and mortar deformation in the joints [11]. Stiffness proportional damping was 
specified to approximate inelastic impact between blocks and to limit unrealistic high fre-
quency vibrations [11]. Mass proportional damping was not used. 

 
 

 
Figure 3: (a) Church of St. Mary Magdalene, (b) repaired masonry spire, (c) DEM model of spire, and (d) model 

spire geometry. 

 
 

Estone Emortar Density,  kjoint Friction angle Stiffness proportional 
[GPa] [GPa] [kg/m3] [GPa/m] [degrees] damping constant [-] 

30 10 2600 98 30 2.1x10-5 

Table 1: Modeling parameters. 
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Figure 4: Progressive collapse under constant horizontal ground acceleration. 

3.2 Constant acceleration results 

To evaluate the minimum possible acceleration which could cause collapse, an increasing 
horizontal acceleration was applied until the overturning occurred. As expected, diagonal 
cracking of the spire occurred (Figure 4). The window openings and the lack of interlocking 
between blocks above the windows allowed a remarkably vertical crack to form. The collapse 
acceleration varied from 0.164g to 0.176g in the four horizontal directions, showing some ef-
fects of varying block interlock. In general, the spire collapsed with a crack angle of approx-
imately max (Figure 3(d)). According to equation (2),  = 0.192, which compares well 
considering the assumption of a perfect conical shell instead of a windowed octagonal spire 
with vertical joints. A refined analytical model including the solid tip and more precise geo-
metry yields  = 0.168.  

It is worth noting that even this simple simulation indicates that the poor interlock between 
blocks limited the ability of the spire to withstand lateral acceleration. Friction due to better 
interlocking could significantly reduce . 

3.3 Single Impulse Results 

The spire was also subjected to a suite of single cycle sinusoidal ground acceleration pulses 
of maximum amplitude ap and of duration Tp. The response of the spire was repeatedly simu-
lated to evaluate the pulse characteristics which cause damage (visible residual displacements) 
and complete collapse. The results are presented in Figure 5, in which the regions above the 
curves represent regions of damage and collapse respectively. A representative rocking re-
sponse of the spire is depicted in Figure 6, where the ground moves to the right and the spire 
rocks to the left (Figure 6(a,b)), recovers and impacts (Figure 6(c)), and then collapses to the 
right (Figure 6(d)). This mode of collapse will be referred to as Mode I collapse; immediate 
collapse to the left without impact will be referred to as Mode II collapse (after [5]). 

The analytical model presented in §2.3 enables the prediction of Mode I and Mode II rock-
ing collapse. However, the response is sensitive to p. For two identical spires of different 
scale, the larger will be much more resistant to overturning. The collapse curve for the entire 
spire (9.4 meters tall), and for the solid spire tip alone (3.4 m tall), are also presented in Figure 
5. The region inside the lower loop of the collapse curve represents Mode I collapse, while the 
region above the upper portion of the collapse curve represents mode II collapse. Clearly the 
tip alone is more vulnerable. 

(a) (c) (d) (b) 
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Figure 5: Damage and collapse diagram for a single sinusoidal base acceleration pulse. 

 
Figure 6: Progressive collapse under for a single sinusoidal base acceleration pulse with ap = 1.0 g and Tp = 1.0 s 

(ground moves to the right). 

In addition to considering the entire cracked cone and solely the cone tip, there may be a 
worse condition. Suppose the spire is allowed to crack, and the cracked portion begins rock-
ing. For this case the maximum p value would shift the collapse curve furthest to the left. If 
the crack is assumed to initiate just below the solid tip, p is plotted as a function of the 
cracked height H  in Figure 7(a). For the spire in question, the maximum value of p occurs for 
H  = 4.1 meters, which would yield the collapse curve in Figure 7(b). 

The results indicate that while rocking of the cracked spire tip is theoretically the worst 
condition, it may be slightly conservative. In fact, Mode I collapse due to this condition is un-
likely due to the inability of the rocking mechanism to reflect without significant dissipation 
of energy. Instead, an alternate mode of failure may govern, in which the impulse is not large 
enough to cause Mode II collapse of the cracked spire, but the impulse is large enough to 
cause significant damage to the non-rocking portion of the spire, which then cannot sustain 
the impact resulting when the rocking portion of the spire recovers. 

(a) (c) (d) (b) 
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Figure 7: Progressive collapse under for a single sinusoidal horizontal base acceleration pulse. 

 
Regardless, Figures 5 and 7(b) indicate that the primary impulse within the earthquake 

ground motion experienced by the spire was way too small for rocking damage or overturning 
collapse to occur. 

3.4 Seismic Response Results 

Unfortunately, ground motion acceleration data from the location of the earthquake was 
not available near the location of the spire. Instead, ground motion data from a similar epicen-
tral distance was used. Unfortunately, this completely alters the effects of seismic wave direc-
tionality and local soil amplification. To compensate, the ground motion was scaled by a 
range of 2-6 times to account for local site amplification due to differences in soil conditions.  

To determine the response of the spire, it is also necessary to consider the amplification of 
the ground motion by the structure itself. Using a procedure similar to that presented in §2.2, 
the natural frequency of the combined tower and spire was estimated to be ~ 6.8 Hz. The 
spectral earthquake data reached its maximum in a similar frequency range, so the fundamen-
tal mode was determined to dominate the response, and was used to approximate the horizon-
tal motion at the base of the DEM model.  

The DEM model was then used to simulate the seismic response. While assumptions are 
too numerous to be able to expect to exactly predict the spire response, a few conclusions can 
be drawn. Because the input acceleration was larger than 0.17g for very short durations, over-
turning mechanisms were repeatedly formed and closed almost immediately, causing the spire 
to very slightly walk apart, and leaving vertical gaps between stones (Figure 8(b)). Increased 
amplification of the ground motion input led to increased ‘walking’ and larger vertical gaps 
between stones. These same vertical gaps appeared above the windows of the actual spire 
(Figure 8(a)), and led to the need for reconstruction. The duration of the strong motion portion 
of the earthquake also appears to be critical to evaluate the level of ‘walking’. Generally, it is 
evident that earthquake ground accelerations must have been amplified locally, by both the 
soil and the structure, to have caused the observed damage.  

 

(a) (b) 

0

1

2

3

4

3.5 5.5 7.5 9.5

p
[1

/s
]

H [m][ ]H m

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5

Pu
ls

e 
ac

ce
le

ra
tio

n,
 a

p
[g

]

Pulse duration, Tp [s]

Collapse (DEM)

Collapse (Analytical), 
Cracked spire tip



M.J. DeJong and C. Vibert 

 10

 
Figure 8: Interior view of spire: (a) actual damage, (b) DEM simulation of damage. 

4 CONCLUSIONS 

The seismic collapse of unreinforced masonry spires is difficult to predict. There is clearly 
an initial elastic response which must be considered, followed by a rocking response which 
completely alters the dynamics of the system.  The analytical approach presented herein pro-
vides a context for dealing with both of these aspects of the dynamic response. However, due 
to the number of simplifying assumptions involved in the analytical formulation, DEM is crit-
ical to evaluate the actual spire response.  

Both the analytical and computational results indicate that the damage to the spire of the 
church of St. Mary Magdalene could not have been caused by the acceleration magnitudes 
recorded at a similar epicentral distance, or even the ground acceleration scaled due to local 
soil conditions. Additionally, it was not likely that the damage was caused by a single impulse 
within the ground motion. Instead, structural amplification seems to have caused large enough 
accelerations at the top of the spire to cause the spire to walk apart over a longer duration of 
time, producing the observed damage. 
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