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Abstract. When considering numerical acoustic or elastic wave propagation in media contain-
ing small heterogeneities with respect to the minimum wavelength of the wavefield, being able to
upscale physical properties (or homogenize them) is valuable, for mainly two reasons: first, re-
placing the original discontinuous and very heterogeneous media by a smooth and more simple
one, is a judicious alternative to the necessary fine and difficult meshing of the original media
required by many wave equation solvers; second, it helps to understand what properties of a
medium are really “seen” by the wavefield propagating through it, which is an important aspect
in an inverse problem approach. We present here a solution to solve this up-scaling problem
for non-periodic complex media with rapid variations in all directions based an a non-periodic
homogenization procedure. We first present a pedagogical introduction to non-periodic homog-
enization in 1-D, allowing to find the effective wave equation and effective physical properties
of the wave equation in a highly heterogeneous medium. It can be extended from 1D to a higher
space dimension and a special care of boundary conditions is required. This development can
be seen as an extension of the classical two-scale periodic homogenization theory applied to
the wave equation for non-periodic media. To validate this development, we then present two
examples of wave propagation in 2D complex elastic models: a geometrically square model
with random heterogeneities, and the Marmousi2 model. A reference solution is computed with
the Spectral Element Method with meshes honoring all interfaces. Furthermore, we compare
the results obtained in the homogenized model and in a low-pass filtered model with respect to
the reference solution.
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1 Introduction

Being able to model and understand wave propagation in complex media is a constant con-
cern for seismologist and the exploration community. In the recent years, advances in numer-
ical methods have allowed to model full seismic waveform in complex media. Among these
advances in numerical modeling, the introduction of the Spectral Element Method (SEM) in
seismology has been particularly interesting [1]. This method has the advantage to be accurate
for all type of waves and all type of media, as long as an hexahedral mesh, on which the method
relies, can be designed such that all physical discontinuities are honored. In realistic media, the
design of such a mesh is often impossible. For such a case, a smooth effective elastic media
would solve the problem by removing the discontinuities of the elastic model while keeping the
waveforms intact. Actually this problem is not limited to SEM and can be seen as a particular
case of a more general problem in seismology: when an elastic model contains details much
smaller than the wavelength, the model can be up-scaled consistently with the wave equation in
some specific cases only: the layered media, and the periodic ones. In other words, the effective
medium of a given general elastic model for a given minimum wavelength is unknown. For lay-
ered media, the up-scaling solution is known since the early work of Backus [2]. More recently,
this order 0 (when referred to the homogenization theory) pioneer work has been extended to
higher order, but still in the layered media case [3]. For elastic models with fast variations in
several directions, the problem has been addressed for long with the two scale homogenization
[4, ] but is limited to the periodic media case.
In this work, we go beyond the non-periodic layered case and the high dimension periodic case
with an up-scaling tool based on non-periodic homogenization.

2 Theory

We first present the homogenization method in a simple 1D periodic case and in a simplified
manner. We consider a scalar wave propagating in a infinite elastic bar with `-periodic elas-
tic property E(x) and density ρ(x). We assume the existence of a minimum wavelength λm
for the propagating wavefield and that ε := `

λm
<< 1. The equation of motion, driving the

displacement uε, and the constitutive relation in the bar are

ρε∂ttu
ε − ∂xσε = f ε

σε = Eε∂xu
ε (1)

The classical periodic homogenization procedure to solve the above problem is the following:

1. The fast variable y = x
ε

is introduced;

2. The cell property ρ(y) := ρε(εy) and E(y) := Eε(εy) are defined;

3. As ε→ 0, y and x are treated as independent variables implying ∂
∂x
→ ∂

∂x
+ 1

ε
∂
∂y

;

4. Solutions to (1) are sought as asymptotic expansions in ε:

uε(x, t) =
∑
i≥0

εiui(x, y =
x

ε
, t)

σε(x, t) =
∑
i≥−1

εiσi(x, y =
x

ε
, t)
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5. Finally, injecting the previous expansions in 1 the series of equation to be solved for each
i are:

ρ∂ttu
i + ∂xσ

i + ∂yσ
i+1 = f i

σi = E(∂xu
i + ∂yu

i+1)
(2)

Defining, for any function h(x, y), λm-periodic in y, the cell average

〈h〉 (x) = 1

λm

∫ λm

0

h(x, y)dy ,

and solving the series of equations (2) up to the first order, we find that u = 〈u0〉 + ε 〈u1〉 and
σ = 〈σ0〉+ ε 〈σ1〉 are solutions of the following effective wave equation:

〈ρ〉 ∂ttu− ∂xσ = f , σ = E∗∂xu

where E∗ = 〈E(1 + ∂yχ
1)〉 is the effective elastic parameter and where χ1 is the first order

periodic corrector. χ1 is solution of the cell problem:

∂
[
E(1 + ∂yχ

1)
]
= 0 . (3)

The final order 1 solution can be obtained with

uε = (1 + εχ1∂x)u+O(ε2)

It appears that:

• in this simple 1D case, we can find an analytical solution to the cell problem leading to
1/E∗ = 〈1/E〉. This result is similar to the Backus (1962)’s result. There is not such an
analytical solution for higher spatial dimensions.

• at the order 0, the solutions do not depend on the microscopic scale (y) . This is still true
in 2D and 3D for u0 but not for σ0;

• at order> 0: the boundary conditions change (e.g. Neumann condition becomes Dirichlet
to Neumann);

• at order > 1: the effective equation changes (it is not the classical wave equation any-
more);

Moving to the non-periodic case

When dealing with non-periodic media, the classical periodic homogenization can still be
applied for the whole bar, but, then obtaining a simple constant effective media, is not really in-
teresting. To keep the ideas of periodic homogenization and allowing a more complete effective
medium, we introduce an arbitrary scale separation around a given wavelength λ0. All scales
smaller that λ0 are considered as small scales and scales larger than λ0 are considered as large
scales. We define ε0 := λ0/λm. A spatial filter operator (a low-pass filter) is introduced:

F ε0(h)(x) =
∫
h(x′)wε0(x− x′) , dx′

where wε0 is a low-pass filter wavelet with a wave-number cutoff around 1/λ0 (see Fig. 1). F ε0
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Figure 1: w wavelet example, in the space (left plot) and in the wave-number (right plot) domains, with a cutoff
at ' 1m−1.

allows to piratically define the slow (x part) from the fast (y part) variations. The difficulty is
to define an Eε0(x, y) allowing to separate the scales according to F ε0 . In the 1D case [3], this
can be done using

1

Eε0
(x, y) = F ε0

(
1

E

)
(x) +

(
1

E
−F ε0

(
1

E

))
(y) (4)

In that case, we can readily show that

1

Eε0∗
=

〈
1

Eε0

〉
= F ε0

(
1

E

)
This effective Eε0∗ is smooth but allows to capture the whole wavefield for small enough ε0.
At this point, most of the periodic development is still valid and non-periodic correctors can be
computed.

Going to higher dimensions

For the periodic case, 2D/3D homogenization technique exists and can be applied to the
wave equation without specific difficulty. For non periodic media, the generalization of the 1D
case previously presented is difficult because no analytical solution to the cell (3) problem does
exist and a direct construction similar to (4) is not possible. We have nevertheless developed an
un-direct construction of the elastic tensor cε0(x,y) allowing non-periodic homogenization in
a spatial dimension higher than 1. In the next section are shown two examples of applications
in the case of the P-SV wave propagation in 2D.

Two examples

2.1 Random square example

The first model is a randomly generated 2D elastic medium. It consists of a 30 × 30 km2

square matrix of 300× 300 elements of constant elastic properties surrounded by a 10 km thick
strip of constant elastic properties corresponding to P and S wave velocities of 5 km−1 and
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Figure 2: “Random square” model. Only Vs is presented in this plot.

3.2 km−1 respectively and a density of 3000 kg m−3 (see Fig. 2). In each element of the matrix,
the constant elastic properties and density are generated independently and randomly within
±50% of the outer square elastic values. We wish to propagate waves induced by an explosion
located at x0 = t(20 km, 20 km) (center of the square), the source time dependence being
described by a Ricker wavelet (i.e. second derivative of a Gaussian function) with a central
frequency of 1.5 Hz (corresponding roughly to a corner frequency of 3.6 Hz). Ignoring the
fluctuation of velocity in the inner square and far away enough from the source, we can estimate
the minimum wavelength λm of the wavefield generated by the explosion, to be roughly equal to
800m. To obtain the promised accuracy of the SEM, we must generate a mesh based on square
elements that honors all physical discontinuities. In this case, the geometry is so simple that the
mesh generation is trivial, nevertheless, it imposes 100×100m2 elements in the random matrix.
Knowing that a degree 4 spectral element (a tensorial product of degree 4 polynomial basis) can
roughly handle one wavelength per element, the mesh is oversampling the wavefield by a factor
8 in each direction leading to a factor 512 in numerical cost (a factor 8 in each direction and
a factor 8 in time to match the Newmark time marching scheme stability condition). For this
simple 2-D case, this factor 512 can be handle and this allows to compute a reference solution.
Nevertheless, one can imagine that for a 3-D case, meshing the original model can quickly be
out of reach for a reasonable computing power and the temptation would be high to either use a
mesh that doesn’t honor the physical interfaces or to simplify the model.

We choose an ε0 = 0.4 for the homogenization procedure (which means we filter out all
oscillations in the medium that are twice smaller than the wavelength). The Vs and the total
anisotropy (we define the total anisotropy as max {|c∗ − c∗iso|}/max {|c∗|} where c∗iso is the
closest isotope elastic tensor to c∗) of the homogenized media are shown Fig. 3. In Fig. 4 are
shown the reference solution, the result of a run in the homogenized model and in a naively
“filtered model” (we defined the filtered model as cf = F ε0(c). The is a low-pass filtered
version of the original model) for a receiver located in t(37 km, 20 km). It can seen that the
homogenized solution is very accurate compared to the “filtered” solution.
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Figure 3: One of the Vs (top left plot) and total anisotropy (top right plot) of the homogenized model of the random
square model. The bottom plot is a cut along z = 32 km in the original Vs (black line) and one of the Vs of the
homogenized model (red line).

Marmousi2 model

Marmousi2 is a 2D elastic geological model derived by G.S. Martin from the original Mar-
mousi model designed by the IFP (Fig. 5). The model contains thin (down to some meters)
and complex structures. Even for a 2D model, the quadrangular mesh required for the Spectral
Element Method is difficult to design and leads to a significant numerical cost (the reference
solution computed here lasted for 7 days using 64 CPU). A sample of the mesh is shown Fig. 6,
top plot. Here, the source is an explosion with, in time, a Ricker wavelet with central frequency
of 6Hz (15Hz corner) leading to a minimum wavelength varying from 20m at the top of the
model to 230m at the bottom. A snapshot of the propagating kinetic energy is shown in Fig. 8.
The non-periodic homogenization is performed using a corner wavenumber of 0.017m−1 which
implies a ε0 varying from 3 at the top of the model to 0.25 at the bottom. One of the S velocity
and the total anisotropy of the homogenized model are plotted in Fig. 7. For the homogenized
model, the SEM mesh is a trivial regular mesh (see Fig. 6, bottom plot) leading to a lower
numerical cost (1 hour using 64 CPU).

An example of traces is shown in Fig. 9. It appears that, even if the ε0 is very poor at the
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Figure 4: Traces (top: horizontal component, bottom: vertical component) for a receiver located in the middle
of the model. The reference solution (black line), the homogenized solution (red line) and the “filtered” solution
(green line, see text) are represented.

top of the medium, the seismograms obtained using the homogenization procedure are in very
good agreement with the reference solution. The difference between those solutions and the
“filtered” one is nevertheless less spectacular than for the random square example: this is due
to the heterogeneities spectrum of the Marmousi2 model which has little power in the domain
of the high wavenumbers.

3 Conclusions

We have presented a homogenization process for the wave equation allowing to up-scale
2D/3D non-periodic elastic models. This is a significant improvement of previous works which
were limited to the layered non-periodic media case or to the 2D/3D periodic media case (more
results can be found in [6, 7, 8]). To obtain a complete 2D/3D up-scaling tool, issues like
boundary conditions in non-periodic 2-D/3-D cases (1-D case have been solved, [3, 5]) remain
to be treated. This work should be useful for both forward and inverse problems.
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Figure 5: S velocity of the Marmousi2 model. The liquid layer has been replaced by a solid layer with slow S
wave velocity.
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Figure 6: Sample of the SEM mesh for the original marmousi2 model (top plot) and for the homogenized Mar-
mousi2 model (bottom plot). The back ground color is Vs.
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Figure 7: One of the S velocity (top plot) and the total anisotropy (bottom plot) of the homogenized marmousi2
model
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Figure 8: Snapshot of the propagating kinetic energy in marmousi2 at t = 1.4 s

Figure 9: Traces (top: vertical component, bottom: horizontal component) for a receiver located at the middle of
the model. The reference solution (black line), the homogenized solution (red line) and the “filtered” solution are
represented (green line). On the right column are shown the residuals (the differences between the approximate
solutions and the reference solution)
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