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Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, Ecully 69134, France

e-mail:{hang.yu, frederic.gillot, mohamed.ichchou}@ec-lyon.fr

Keywords: SFR, Random Eigenvalue Problem, HPCEM, DSBM, Modal Intermixing.

Abstract. The frequency response shows a big significance in estimating the structural re-
sponse of linear systems subjected to dynamic loads. Its quantification is decided by the modal
properties (e.g. natural frequencies and mode shapes), which are always involved in the ran-
dom eigenvalue problem regarding uncertain structures. The conventional way to determine the
associated stochastic frequency response (SFR) is the directly sample-based method (DSBM),
which relays on Monte Carlo sampling technique and deterministic modal analysis by FEA.
However, the accuracy of the DSBM is at the cost of efficiency since a large number of modal
analyses are required. In this work, the Hermite polynomial chaos expansion method (HPCEM)
is implemented to solve the random eigenvalue problem. The coefficients are estimated by the
least square method (LSM) considering its robustness and facility. Furthermore, the modal in-
termixing problem is particularly considered whereby the mathematical limitation and physical
validity of the HPCEM are specified. In order to fulfill the practical requirements, a univariable
based strategy is proposed to avoid this issue. This strategy in conjunction with the modal as-
surance criterion (MAC) provides a quantitative way to define the modal intermixing. The fast
modal solutions by the HPCEM will be helpful to control the dynamic response within certain
frequency interval of interest during the design phase, on one hand; on the other hand, the
HPCEM can also be used to evaluate the dynamic response and thereafter to improve efficiency
of reliability analysis. Numerical investigations of the SFR provide the comparisons between
the results obtained by the HPCEM and DSBM, which demonstrate the efficiency and accuracy.
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1 INTRODUCTION

Uncertainties are always taken into account for modern systems since there is no adequate
information to precisely specify the structural parameters, boundary conditions and excitations,
the randomness of which can be described by random variablesor stochastic processes. Fur-
thermore, the model uncertainties induced from the mathematical-mechanical modeling process
has to be dealt with an alternative developed by Soize [17,18] in the light of the random matrix
theory. In the context of design or maintenance, how to determine the effects of uncertainties
has been paid close attention to for decades.

In practical applications, complex structures or systems are always concerned. The proce-
dure to obtain the structural response (other quantities such as the stress and deformation are
also included) relays exclusively on the finite element analysis (FEA). One of the most attrac-
tive structural response of dynamical systems is the frequency response, which can provide
the information of the response within certain excitation frequency interval of interest. It will
be helpful to control the amplitude of the response in the design phase [19–22], regardless of
deterministic systems or random systems. In cases where theuncertainties are considered, in
conjunction with Monte Carlo sampling technique, huge amounts of deterministic FE analyses
have to be executed so as to quantify the statistics of the structural response. The way men-
tioned above to determine the associated SFR is the DSBM, which is related to MCS. However,
this method will not be tractable in engineering due to computationally intensive numerical
simulation.

For linear structures, the frequency response is the function of the modal properties, i.e.
natural frequencies, mode shapes and modal damping. As longas the statistics of the modal
properties can be decided, the randomness of the SFR are readily characterized. To gain the
statistics of the modal properties, the random eigenvalue problem is usually involved. From
the literatures, the perturbation method [15, 23] is a classic method to solve this problem.
Nevertheless, the achieved accuracy will only be satisfied for random inputs (e.g. material
properties) with small coefficients of variation (COV), sayless than5% [23]. To this end, an
alternative named the HPCEM [4,5,15] is developed to solve the random eigenvalue problem.

In current work, the HPCEM is implemented to calculate the eigenvalues and eigenfactors
defined in [11]. The LSM is implemented to determine the associated coefficients. The DSBM
based on Matlab in conjunction with FE-softwares is appliedto prepare the small number of
samples for the LSM. Moreover, the modal intermixing [14] ormodal interaction [15,16] prob-
lem is particularly considered whereby the mathematical limitation and physical validity of the
HPCEM are specified. Regarding the practical applications,it is dispensable to be avoided.
However, none of the above works provide an effective way to remove this issue. In this case,
a univariable based strategy is proposed, the kernel of which is to keep the random eigenvalues
and eigenvetors with small variability comparing to the mean model. The consistency is de-
lineated by the MAC (modal assurance criterion) factor. In this strategy, we can check which
random variable can cause modal intermixing and then avert the modal intermixing by reducing
the associated variance.

In section 2, the SFR representation of multi-degree structures is addressed. Section 3 spec-
ifies the DSBM and HPCEM to solve the random eigenvalue problem and discusses the ap-
proaches to calculate the associated coefficients. In Section 4, we state the strategy to avoid the
modal intermixing problem. To show the efficiency and accuracy, in Section 5, two numerical
examples are investigated, which are demonstrated by comparing the results obtained by the
DSBM. At last, we summarize the main findings of this work in Section 6.
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2 SFR REPRESENTATION

The SFR of a linear multi-degree structure can be calculatedby the modal superposition
principle which is written as:

drk(θ, ω) =
N≪n
∑

j

φrj(θ)φkj(θ)ω
l

ω2
j (θ) + i · 2ζj(θ)ωj(θ)ω − ω2

, (1)

wheredrk(θ, ω) denotes the SFR at therth degree of freedom (DOF) under the excitation at
thekth DOF;θ indicates the set of random structural parameters;ω is the excitation frequency;
ωj(θ) is associated with thejth random natural frequency, i.e.λj = ω2

j (θ) is the associated
random eigenvalue;φkj(θ) represents thejth random eigenvector (mode shape) at thekth DOF;
l = 0, 1, 2 represent the displacement, velocity and acceleration SFR, respectively;n is the
number of the DOF, whileN is the number of the modes of interest.

High non-linearity has been observed in Eq. (1) so that no simple linearly approximate
relation between the SFR and random parameters can be found.To this end, more attempts to
solve the random eigenvalue problem have been made since theSFR is expressed explicitly by
the natural frequencies and mode shapes.

3 RANDOM EIGENVALUE PRROBLEM

3.1 DSBM

Regarding the random eigenvalue problem, the simply numerical method is the DSBM. In
this work, the general process is realized by Matlab and FE softwares shown in Fig.1. Matlab
takes charge of generating random variables (random inputs) and FE softwares provide modal
solutions. The advantages of this method are those:

• Matlab can offer commonly used random variables based on Monte Carlo sampling tech-
nique. That means we can get almost any unimodal distributedrandom variable of interest
efficiently and accurately.

• The modal analysis is the basic module of most FE softwares. No matter how complex
and large the structure is, modal solutions of FE softwares could be reasonably precise.

• There is no assumption during the whole process. Hence, all the results are accurate
which can be treated as calibrations.

Because FE softwares are usually the deterministic solvers, each time they can only carry
out one modal analysis associated with one set of random variables. It is obvious that, in order
to gain a large number of modal solutions, the process must berepeated for many times shown
in Fig. 1. As a result, this method is computationally expensive, which is not practical in
engineering.

3.2 Approximate sample-based method

3.2.1 HPCEM

The generalized random eigenvalue problem of undamped multi-degree structures is given
by:

[K(θ)]{φ(θ)} = λ(θ)[M(θ)]{φ(θ)}, (2)
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Figure 1: DSBM

where[K(θ)] and[M(θ)] are random stiffness and mass matrices;λ(θ) and{φ(θ)} repre-
sent random eigenvalue and eigenvector respectively. Solving a random eigenvalue problem,
the statistics of the eigenvalue and eigenvector must be characterized by the randomness of the
structures, i.e the random inputsθ. Based on the theorem of Gameron-Martin [6], a square
integrable random variable can be represented by HPC with anacceptable convergence. In
case that the convergence rate is substantially slow, extensions to other orthogonal polynomials
(named Wiener-Askey polynomial chaos) representation could be used according to the work
[1,4,5]. Furthermore, Roger Ghanem et al [2] used HPC to express the stiffness matrix, random
eigenvalues and eigenvectors to solve the random eigenvalue problem (see Eq. (2)). Inspired by
these works, thejth random eigenvalue and eigenvector can reasonably be formed as:

λj =
∞
∑

p=0

apHp(ξ), {φ}j =
∞
∑

p=0

bpHp(ξ), (3)

whereHp(ξ) is the multidimensional HPC of orderp in standard normal space in whichξ
represents the standard normal variables,ap andbp are the constant coefficients. HPC has the
properties:

H0 ≡ 1, 〈Hp = 0〉 , p > 0, 〈HpHq〉 = δpq
〈

H2
p

〉

, (4)

whereδpq is the Kronecker delta and〈·, ·〉 denotes the ensemble average. This is the inner
product in the Hilbert space of Gaussian random variables defined by:

〈f(ξ)g(ξ)〉 =
∫

f(ξ)g(ξ)W (ξ)dξ, (5)

The weightW (ξ) function is multidimensional Gaussian joint probability density function.
Notice that Hermite polynomials are functions of standard normal random variablesξ. In the
original random eigenvalue problem (see Eq. (2)), random solutions are determined by random
variablesθ. θ andξ are usually not the same. Nonetheless, implementation of transformation
techniques, such as Rossenblatt transformation [7] and Nataf model in [8], the random variables
θ can be transformed to standard normal random variablesξ with one to one mapping:θi → ξi.
Then the Eq. (2) will be rewritten as:

[K(ξ)]{φ(ξ)} = λ(ξ)[M(ξ)]{φ(ξ)}, (6)
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Some analytical transformations between random variablesof common univariate distribu-
tions and standard normal variables have been listed in [9, 10]. From Eq. (1), the SFR is the
function of natural frequenciesωj , and the eigenfactor defined asφrjφkj [11]. Debusschere et
al [12] indicated that multiplication of two random variables expanded by polynomial chaos
can also be expanded by the same polynomial chaos. This proposition can save the CPU time.
Moreover, the elementsφrj andφkj from the same eigenvector which insinuates that they have
the same converged rate. Consequently, we can use the HPC expansion to represent the eigen-
factor directly:

φrjφkj =
∞
∑

p=0

cpHp(ξ), (7)

3.2.2 Coefficients calculation

When implementing HPC, one of the critical issues is to accurately estimate the coefficients.
In the expressions of random eigenvalues and eigenfactors (See Eq. (3) and Eq. (7)), the number
of the coefficients is infinite. This formula is not tractablein practice. Generally, the truncation
formula is usually used. The representations of eigenvalues and eigenvectors are rewritten as:

λj =
P
∑

p=0

apHp(ξ), φrjφkj =
P
∑

p=0

cpHp(ξ), (8)

The total number of polynomial chaos isNpc = P +1 which is determined by the dimension
Nrv of random variablesξ and the highest orderNho of the HPC.

Npc =
(Nrv +Nho)!

Nrv!Nho!
, (9)

Several methods can be exploited to compute the coefficients:

• Orthogonalized method [2]. This method makes use of the orthogonality of the polyno-
mial chaos basis. Taking the inner product in Eq. (8) withHp, we have

ap =
< λjHp >

< H2
p >

, cp =
< φrjφkjHp >

< H2
p >

, (10)

The denominators in the above expressions have been calculated in [3]. However, the nu-
merators are usually evaluated by MCS. To keep the coefficients accurate, a large quantity
of samples are needed. In that case, we prefer the DSBM since the orthogonalized method
takes no advantage of economy.

• Probabilistic collocation method [9, 13]. As the name defined, the collocation points
are specially selected which correspond to the roots of the Hermite polynomial of one
degree higher than the maximum order of current HPC expansion. With the increase of
the number of random inputs and the order of the expansion, the number of available
collocation points increasing exponentially. For example, in Eq. (9), for the caseNrv =
5, 6 andNho = 2, 3, the number of the collocation is(Nho + 1)Nrv = 243, 4096, whereas
Npc = 21, 84 respectively. As long as the selected number of the collocation points is
equal to the number of HPC expansion terms, we could obtain the coefficients by solving
a set of equations. However, different combination of collocation points may result in
different coefficients. This imposes the instability of thecollocation method.
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• Least square method (LSM). This method belongs to parametric data fitting methods
which will be representative for the whole sample population rather than precisely fitting
each sample point. From this point of view, as long as the HPC expansion model can
contain all information of random outputs, least square method is the first choice thanks
to its facilities and efficiency. Let{a} = [a1, ...ap, ...aNpc

]T , {c} = [c1, ...cp, ...cNpc
]T and

[H ] = {H1, ..., Hp, ..., HNpc
}. Consequently, the least square solutions of the coefficients

with respect to thejth set of random eigenvalues and eigenfactors are

{a} = ([H ]T [H ])−1[H ]T{λj}, {c} = ([H ]T [H ])−1[H ]T{φrjφkj} (11)

Here{λj} and{φrjφkj} are the m-dimension vectors, in whichm denotes the number of
random input samples;[H ] is the matrix of dimension ofm×Npc. For this work, LSM
is utilized. That signifies when we needM random eigenpairs, onlym ≪ M are needed
to determine the HPC representation, with which theM random eigenpairs are readily
gained.

Practically, no matter what method is applied to calculate the coefficients, another critical
issue is that HPC expansion can represent the random eigenvalue reasonably. In the next section,
the mathematical limitation and physical validity of the HPCEM will be discussed.

4 MODAL INTERMIXING

4.1 Problem description

In random structures, the modal intermixing [14] or modal interaction [15, 16] phenomenon
is usually observed when using MCS to model the uncertainties. That means, from one simu-
lation to next, the adjacent modes may exchange whereby the random eigenvectors associated
with the same order, actually, contain more than one mode. Generally, different modes behave
physically different. This is exacerbated for those structures with closed space eigenvalues as
the variances of random inputs increase. That is, mathematically, because the area of probability
overlapping of adjacent modes become larger and larger.

Modal intermixing can strongly affect the accuracy of the HPCEM. In fact, the HPC expan-
sion is originated to represent the solutions of random differential equations. That signifies one
deterministic HPC expansion just refers to the random solutions of one family. Accordingly,
for random eigenvalue problem, the accuracy of HPCEM is guaranteed by averting the modal
intermixing problem. Such mathematical limitation seems to restrict wide applications of the
HPCEM for random eigenvalue problem. However, this limitation has great significance in
practice.

In engineering, when concerning the randomness in structures, the mean model is usually
treated as a benchmark or reference. The modal behaviors of uncertain structures should be
consistent with the benchmark. In that case, the modal intermixing is indispensable to avoid,
the interpretation of which is that the variabilities of random eigenvalues and eigenvector should
be limited in a reasonably acceptable bounds.

4.2 MAC factor

As indicated above, the variabilities of random eigenvalues and eigenvectors around the ones
of mean model ought to be small in order to remove the modal intermixing issue. If this property
holds, the random mode shape can be described as a linear combination [15, 19] ofN mode
shapes of mean model. Thejth eigenvector of simulationk is formulated as:
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{φ}(k)j =
N
∑

i=1

A
(k)
i {φ}(0)i , 1 ≤ j ≤ N, (12)

whereN is the number of modes considered in Eq. (1);A
(k)
i denotes the constant weight

coefficient;{φ}(0)i represents theith eigenvector of the mean model. When the behaviors of
random models are identical with the ones of mean model, the effects of the other modes can
be ignored, which is interpreted as the most contribution tothe sample{φ}(k)j is from thejth
mode of the mean model. In this situation, the last equation in the approximate formula is:

{φ}(k)j ≈ A
(k)
j {φ}(0)j , A

(k)
j > 0, (13)

Obviously, the angle between eigenvector{φ}(k)j and{φ}(0)j will meetα(k)
j ≈ 0. In conjunc-

tion with Eq. (13), the direction cosine of these two eigenvectors has the property:

cos(α
(k)
jj ) =

{φ}(k)j · {φ}(0)j
∥

∥

∥{φ}(k)j

∥

∥

∥

∥

∥

∥{φ}(0)j

∥

∥

∥

≈ 1, (14)

Here,{φ}(k)j · {φ}(0)j denotes the dot product and
∥

∥

∥{φ}(0)j

∥

∥

∥ is the Euclidean norm. Eq. (14) is
the condition to prevent the random models from the modal intermixing. It is actually a variant
of the Modal Assurance Criterion (MAC) [24]. The corresponding MAC factor is defined by:

f
(k)
MACjj

=
({φ}(k)j · {φ}(0)j )2

∥

∥

∥{φ}(k)j

∥

∥

∥

2 ∥
∥

∥{φ}(0)j

∥

∥

∥

2 = cos2(α
(k)
jj ) ≈ 1 (15)

The MAC is the criterion to check the consistency between twomodes. When the value
approaches unity, the consistency is well observed; on the contrary, the value is smaller than
1, the behaviors show the violation. The modal intermixing isthe right phenomenon from one
simulation to another that reflects the violated modes against the mean modes. Therefore, based
on Eq. (15), the MAC factor is an indicator of the modal intermixing:

f
(k)
MACjj

≈ 1, no modal intermixing

f
(k)
MACjj

< 1, modal intermixing
(16)

4.3 Univariable based strategy

The randomness in modal properties is induced from the random inputs. We have to note that
the information of underlying physical models is usually insufficient so that uncertainties are
always assumed to follow certain distribution. Mean valuescan be obtained readily according
to the knowledge of the problems right in hand. On the contrary, it is difficult to get the precise
variance since the number of sampling tests is practically small. For that reason, by means of
simulation techniques, we need to carefully select the proper variance to fulfill the practical
requirements, i.e. no modal intermixing.

So as to select the proper variance, a univariable based strategy is proposed to check which
random input can cause the modal intermixing and determine what variance should be used. In
this strategy, only one parameter is treated as random variable; others are deterministic. Special
random inputs around the mean value are picked out to capturethe associated modal solutions.
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Let µθ andσθ be the mean and standard deviation (SD) of random variableθ. Then, the random
inputs are written as:

{θ̃} = [µθ ± 2σθ µθ ± 3σθ µθ ± 4σθ µθ ± 5σθ]
T ; (17)

where{θ̃} are the selected random inputs of dimension8. The last four elements of{θ̃}
suggest the very rare realizations. If all the associated eigenvectors especially the ones cor-
responding the rare random inputs can meet the condition in Eq. (15),σθ is the proper SD;
otherwise, a smaller SD will be used to check until the condition is satisfied. An infeasible
variance is always chosen as the initial one so that the final choice will be as large as possible.
Because only 8 modal analyses are required for each candidate variance, regardless of simple
systems or complex systems, this strategy will be computationally efficient. Furthermore, this
strategy is insensitive with distributions of random inputs since the special random inputs are
determined by the mean and SD but the types of distributions.For those reasons, this strategy
is very powerful to avoid the modal intermixing.

5 NUMERICAL EXAMPLES

In the following, two models are investigated to demonstrate the efficiency and accuracy of
this procedure to determine the statistics of the SFR. Random structural parameters are modeled
by normal, lognormal and Gamma distribution respectively for both examples.

Due to the similarity of the results, only the cases associated with normal distribution are
specified. In Section 5.1, a 2-D bridge-like structure: simply supported beam is regarded. For
this model, no modal intermixing problem is taken into consideration as it belongs to the struc-
ture with largely-spaced frequencies. A building-like structure: fixed support plate-beam is
investigated in Section 5.2. The modal intermixing problemmust be considered due to its high
symmetry.

5.1 Bridge-like structure: simply supported beam

Figure 2: Beam model

A 2-D simply supported beam shown in Fig. 2. The first three modes have been used to
estimate the SFR. The corresponding natural frequencies ofthe mean model areω1 = 321.0
rad/s,ω2 = 921.9 rad/s andω3 = 2065.9 rad/s. Tow deterministic parameters are: Poisson’s
ratio ν = 0.3, modal damping ratio coefficientζ = 0.05; the other parameters are independent
random variables, the mean values of which areρ = 7.8 × 103 kg/m3, E = 2.0 × 1011 Pa,
L = 2.5 m, H = 0.1 m, W = 0.08 m for density, Young’s modulus, length, height and width
respectively. Two levels of coefficients of variance (COV),COV = 5% andCOV = 10%, are
considered associated with each distribution. All following results are related to the node in the
middle.

5.1.1 PDFs investigations

Consider normal distribution. Fig. 3(a) and Fig. 3(b) show the probability density functions
(PDFs) of eigenvalues and eigenfactors for the first three modes. The perfect consistence be-
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tween the distributions obtained by HPCEM and DSBM implies that HPCEM can reflect the
statistics characteristics correctly. The largest error of the PDF estimation occurs for the second
eigenfactor. However, it is emphasized that the magnitude is very small which contributes al-
most zero to the SFR. Therefore, such bad approximation of Mode 2 can be ignored. Moreover,
larger COVs of eigenvalues and eigenfactors are observed asto the random inputs with large
COVs. The approximate method such as perturbation method always has difficulty in dealing
with larger COV problems, while the HPCEM can provide the acceptable results. Therefore,
the HPCEM is a powerful tool to solve such problems.

It is revealed that the choice of the current order of HPC seems not sufficient since differences
exist. Note that increasing the order of HPC is profitable in improving the accuracy. But we have
to pay attention that higher order HPC signifies the more computational expense. Accordingly,
there should be a trade-off between the efficiency and accuracy. The similar results of PDFs can
be seen from the rest four figures in Fig. 3 corresponding the other two distributions.
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Figure 3: PDF of eigenvalues and eigenfactors based on 10000samples
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5.1.2 SFR investigations

Fig. 4 shows a comparison of the statistics of the SFR betweenthe DSBM and HPCEM, in
which the maximum, minimum, mean value of the SFR are very close to each other, respec-
tively. The differences are observed for larger COV (see Fig. 4(b), 4(d) and 4(f)). However,
the mean value comparisons represent little difference, which is very significant for reliability
analysis. For smaller COV, the maximum is smaller.
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(a) Normal:COV = 5%
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(b) Normal:COV = 10%
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(c) Lognormal:COV = 5%
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(d) Lognormal:COV = 10%
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(e) Gamma:COV = 5%
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(f) Gamma:COV = 10%

Figure 4: SFR based on 10000 samples for beam

The fourth-order HPC expansion are utilized to represent the eigenvalues and eigenfactors
for all considered distributions with both COV levels. According to Eq. (9), the number of
coefficients is 126. After numerical examinations, 400 samples are chosen to calculate these
coefficients, which is more or less 3 times the coefficients.

In the following, a comparison of average computational time will be specified. So as to
obtain the results in Fig. 4,104 modal analyses are executed in the context of DSBM. Yet, for
the HPCEM, only400 modal analyses are carried out by DSBM and plus 10s to determine the
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coefficients and approximate104 sets of eigenpairs. In conclusion, HPCEM only needs about
4% CPU time of the one needed by DSBM. Efficiency is strongly improved.

It is evident that the HPCEM could be a general method to deal with eigenvalue problem
since good results are obtained for the normal, lognormal and Gamma distribution respectively.
From the above, HPCEM has the capacities to estimate the SFR effectively, which is of big value
concerning reliability analysis since it can save a lot of time from generating a large quantity of
samples. Moreover, for structures with larger COV, it turnsout that HPCEM is a powerful tool.
We also find that the LSM works well in estimating the coefficients of HPC model.

5.2 Building-like structure: plate-beam

In this example, four parameters are selected as random inputs. They are: density, mean
value µρ = 7.8 × 103, COV = 10%; Young’s modulus, mean valueµE = 2.0 × 1011,
COV = 10%; beam length, mean valueµBL = 3, COV = 1.75%; plate thickness, mean
valueµPT = 0.02, COV = 2%. The cases with random inputs following lognormal, normal
and Gamma distribution are studied respectively. More information about this model are as fol-
lowed: Poisson’s ratioν = 0.3, modal damping ratio coefficientζ = 0.01, the height of beam
is 0.04, the width of beam is0.04 and the length of plate (square) is5. All the unites belong
to SI. Ten modes are used to calculated the displacement response. The natural frequencies of
the mean model areω1 = 1.30 rad/s,ω2 = 1.31, ω3 = 1.87, ω4 = 3.99 rad/s,ω5 = 4.01 rad/s,
ω6 = 5.78 rad/s,ω7 = 6.48 rad/s,ω8 = 6.50 rad/s,ω9 = 9.56 rad/s andω10 = 10.86 rad/s.
294 nodes are in the FE model which is shown in Fig. 5. The results are related to node 14 in
direction X. Because of high symmetry in this model, modal intermixing must be considered.
The COVs mentioned above are the proper ones selected by the univariable based strategy.

Figure 5: Plate-Beam model

5.2.1 Modal intermixing

Take the random parameter plate thickness as the example. Fig. 6 schematically describes
the MAC factors with respect to 8 special random inputs. It isfound that the modal intermixing
always concerns the random model whose plate thickness is less than the mean value. The
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explanation is that as the thickness decreases, the flexibility increases since the plate belongs to
thin walled structures. The associated structural behaviors can be different from the reference
(mean model) more easily. Yet, as to thicker plates, the modes have a large probability to agree
with the ones of the mean model.
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(g) µθ − 5σθ
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Figure 6: MAC factor comparison for 8 special random inputs
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From Fig. 6, it is observed that the modal intermixing alwaysoccurs with respect to higher
modes, i.e. mode 7, 8, 9 and 10. Moreover, the larger the variance is, the more probable the
modal intermixing is induced. To that end, it is reasonable to avert the modal intermixing by
reducing the variance.

It is also discovered that when we increase the COVs of density and Young’s modulus to
30%, no modal intermixing occurs, the MAC factors of which is always similar to Fig. 6(b).
In that case, the random inputs like them can be seen as the insensitive parameters; On the
contrary, in cases where random inputs with large COV causing the modal intermixing can be
defined as the sensitive parameters, e.g. plate thickness.

5.2.2 Cases study with different distributions

As the probabilistic information of the random inputs are priory unknown, one can choose
any distribution to describe the randomness as long as the engineering requirements are ful-
filled. From this point of view, like what we have done in Section 5.1, different distribution
assumptions are applied so that the universality of the HPCEM is revealed again.

The accuracy investigation is shown by the comparison of thefrequency response in Fig.
7 for all the three distributions. Probabilistic results (mean) obtained by HPCEM and DSBM
agree with each other well. It is observed that only 6 peaks ofthe mean model can be told off.
That implies there exists very close frequencies.
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(b) Lognormal
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(c) Gamma

Figure 7: SFR based on 10000 samples of Plate-Beam

For this model, the fourth-order HPC expansion is utilized.Only 200 samples are needed to
calculate the 70 coefficients by LSM. We have to note that the number of samples is again about
3 times of that of the coefficients. Considering the situations in Section 5.1, we recommend that
the number of the samples equals more or less 3 times the number of the coefficients in order to
determine the HPC model. The efficiency is still shown by the average CPU time. The DSBM
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needs104 modal analyses, while the HPCEM only requires 200 modal analyses plus 10s to gain
104 sets of eigenvalues and eigenfactors. Almost98% CPU time is saved.

6 CONCLUSIONS

This work concentrates on estimating the statistics of the SFR. The HPCEM is applied to
solve the involved random eigenvalue problem, the coefficients are evaluated by the LSM. The
mathematical limitation and physical validity are specially discussed by considering the modal
intermixing problem, which is always encountered when using Monte Carlo sampling tech-
nique. The univariable based strategy with conjunction with the MAC is proposed to avoid the
modal intermixing problem by reducing the variances of the random inputs. It is helpful to se-
lect the proper variances since no adequate information is apriori in the physical models. Com-
paring with the DSBM, the HPCEM is an efficient method to obtain random eigen-solutions.
Several factors have significant influences on the accuracy and efficiency of HPCEM:

• The modal intermixing problem should be avoided. In cases where this problem exists,
the physical behaviors associated with individual random model may differ from the mean
model (benchmark) and the HPCEM in not acceptable to solve the random eigenvalue
problem.

• The proper number of samples used for LSM for the HPC coefficients estimation ought
to be proper. In this work, according to the simulation examinations, the number of the
samples is recommended as about 3 times the number of the coefficients.

• The dimension of the underlying physical (the number of DOF)systems has a large influ-
ence of the efficiency. The larger a structure is, the more time the modal analysis needs.

• The efficiency is highly improved compared with the DSBM. However, as the number of
random inputs increase,

– the dimension of the HPC expansion increase. It signifies more time are needed
to construct the HPC model which is always obtained by the expensive symbolic
calculation.

– more coefficients have to be evaluated by the LSM. In that case, more samples have
to be prepared for the least square solution.

Note that the HPCEM can effectively obtain the variability of the random eigenvalues and
eigenfactors, and thereafter the SFR. This achievement is very valuable for reliability analysis
as well as reliability based design optimization since reliability analysis has to be carried out
during each function evaluation of the optimization procedure.
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