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Abstract. The frequency response shows a big significance in estimating the structural re-
sponse of linear systems subjected to dynamic loads. Its quantification is decided by the modal
properties (e.g. natural frequencies and mode shapes), which are always involved in the ran-
dom eigenvalue problem regarding uncertain structures. The conventional way to determine the
associated stochastic frequency response (SFR) is the directly sample-based method (DSBM),
which relays on Monte Carlo sampling technique and deterministic modal analysis by FEA.
However, the accuracy of the DSBM is at the cost of efficiency since a large number of modal
analyses are required. In this work, the Hermite polynomial chaos expansion method (HPCEM)
is implemented to solve the random eigenvalue problem. The coefficients are estimated by the
least square method (LSM) considering its robustness and facility. Furthermore, the modal in-
termixing problem is particularly considered whereby the mathematical limitation and physical
validity of the HPCEM are specified. In order to fulfill the practical requirements, a univariable
based strategy is proposed to avoid this issue. This strategy in conjunction with the modal as-
surance criterion (MAC) provides a quantitative way to define the modal intermixing. The fast
modal solutions by the HPCEM will be helpful to control the dynamic response within certain
frequency interval of interest during the design phase, on one hand; on the other hand, the
HPCEM can also be used to evaluate the dynamic response and thereafter to improve efficiency
of reliability analysis. Numerical investigations of the SFR provide the comparisons between
the results obtained by the HPCEM and DSBM, which demonstrate the efficiency and accuracy.
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1 INTRODUCTION

Uncertainties are always taken into account for moderresystsince there is no adequate
information to precisely specify the structural paranmgtboundary conditions and excitations,
the randomness of which can be described by random variabe®chastic processes. Fur-
thermore, the model uncertainties induced from the mattieatanechanical modeling process
has to be dealt with an alternative developed by Sdizé& [J]7nk8e light of the random matrix
theory. In the context of design or maintenance, how to deter the effects of uncertainties
has been paid close attention to for decades.

In practical applications, complex structures or systemasadways concerned. The proce-
dure to obtain the structural response (other quantities as the stress and deformation are
also included) relays exclusively on the finite element gsial(FEA). One of the most attrac-
tive structural response of dynamical systems is the frecueesponse, which can provide
the information of the response within certain excitatimgtiency interval of interest. It will
be helpful to control the amplitude of the response in thegtheghasel[19-22], regardless of
deterministic systems or random systems. In cases whemnttertainties are considered, in
conjunction with Monte Carlo sampling technique, huge ami®wof deterministic FE analyses
have to be executed so as to quantify the statistics of thetatal response. The way men-
tioned above to determine the associated SFR is the DSBMwvirelated to MCS. However,
this method will not be tractable in engineering due to cotaponally intensive numerical
simulation.

For linear structures, the frequency response is the fumaif the modal properties, i.e.
natural frequencies, mode shapes and modal damping. Asatige statistics of the modal
properties can be decided, the randomness of the SFR aié/ refaaracterized. To gain the
statistics of the modal properties, the random eigenvatablem is usually involved. From
the literatures, the perturbation method [[15, 23] is a atassethod to solve this problem.
Nevertheless, the achieved accuracy will only be satisiieddndom inputs (e.g. material
properties) with small coefficients of variation (COV), dags tharb% [23]. To this end, an
alternative named the HPCEMI[4|5]15] is developed to sdleegandom eigenvalue problem.

In current work, the HPCEM is implemented to calculate tlgeepvalues and eigenfactors
defined in[[11]. The LSM is implemented to determine the assed coefficients. The DSBM
based on Matlab in conjunction with FE-softwares is apptegrepare the small number of
samples for the LSM. Moreover, the modal intermixing [14huwdal interaction [15%, 16] prob-
lem is particularly considered whereby the mathematicaikéition and physical validity of the
HPCEM are specified. Regarding the practical applicatidns, dispensable to be avoided.
However, none of the above works provide an effective wayetoave this issue. In this case,
a univariable based strategy is proposed, the kernel oftwhito keep the random eigenvalues
and eigenvetors with small variability comparing to the meaodel. The consistency is de-
lineated by the MAC (modal assurance criterion) factor.hiis strategy, we can check which
random variable can cause modal intermixing and then awvernbdal intermixing by reducing
the associated variance.

In sectior 2, the SFR representation of multi-degree sirastis addressed. Sect(dn 3 spec-
ifies the DSBM and HPCEM to solve the random eigenvalue proldad discusses the ap-
proaches to calculate the associated coefficients. In@edtiwe state the strategy to avoid the
modal intermixing problem. To show the efficiency and accuran Sectiori b, two numerical
examples are investigated, which are demonstrated by aamgpthe results obtained by the
DSBM. At last, we summarize the main findings of this work ircts@n[8.
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2 SFR REPRESENTATION

The SFR of a linear multi-degree structure can be calculbyethe modal superposition
principle which is written as:

R Or(0) 1 (0)w
W09 = 2 G i 2, (0)y @) — 7

J

1)

whered, (6, w) denotes the SFR at th¢h degree of freedom (DOF) under the excitation at
thekth DOF; @ indicates the set of random structural parameteiis;the excitation frequency;
w;(0) is associated with thgth random natural frequency, i.e,; = w?(6) is the associated
random eigenvaluej;; (@) represents th¢th random eigenvector (mode shape) atitieDOF;

[l = 0,1,2 represent the displacement, velocity and acceleration, 84pectively;n is the
number of the DOF, whiléV is the number of the modes of interest.

High non-linearity has been observed in Eql (1) so that ngl&rtinearly approximate
relation between the SFR and random parameters can be féarttis end, more attempts to
solve the random eigenvalue problem have been made sin&&Rés expressed explicitly by
the natural frequencies and mode shapes.

3 RANDOM EIGENVALUE PRROBLEM
3.1 DSBM

Regarding the random eigenvalue problem, the simply nualemethod is the DSBM. In
this work, the general process is realized by Matlab and Févaces shown in Fig.1. Matlab
takes charge of generating random variables (random ippots FE softwares provide modal
solutions. The advantages of this method are those:

e Matlab can offer commonly used random variables based orté/@arlo sampling tech-
nique. That means we can get almost any unimodal distrilvatetbm variable of interest
efficiently and accurately.

e The modal analysis is the basic module of most FE softwaresmbitter how complex
and large the structure is, modal solutions of FE softwapetddoe reasonably precise.

e There is no assumption during the whole process. Hencehaltdsults are accurate
which can be treated as calibrations.

Because FE softwares are usually the deterministic sqleah time they can only carry
out one modal analysis associated with one set of randorablas. It is obvious that, in order
to gain a large number of modal solutions, the process musdsated for many times shown
in Fig. 1. As a result, this method is computationally expemswhich is not practical in
engineering.

3.2 Approximate sample-based method
3.2.1 HPCEM

The generalized random eigenvalue problem of undamped-degtee structures is given
by:
[K(0)[{¢(6)} = A(6)[M(8)[{4(0)}, (2)
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Figure 1: DSBM

where[K(0)] and[M (0)] are random stiffness and mass matricg#)) and{¢(0)} repre-
sent random eigenvalue and eigenvector respectively.irfgplvrandom eigenvalue problem,
the statistics of the eigenvalue and eigenvector must bectesized by the randomness of the
structures, i.e the random inpuls Based on the theorem of Gameron-Martin [6], a square
integrable random variable can be represented by HPC withcaaptable convergence. In
case that the convergence rate is substantially slow, extesnto other orthogonal polynomials
(named Wiener-Askey polynomial chaos) representatiotdcoe used according to the work
[1/4]5]. Furthermore, Roger Ghanem etal [2] used HPC toesgathe stiffness matrix, random
eigenvalues and eigenvectors to solve the random eigenpadblem (see Eq.](2)). Inspired by
these works, thgth random eigenvalue and eigenvector can reasonably betbast

N =S aH ), (6} = b (E), @)
p=0 p=0

where H,(£) is the multidimensional HPC of orderin standard normal space in whigh
represents the standard normal variablgsandb, are the constant coefficients. HPC has the
properties:
Hy=1, (Hy=0), p>0,  (HH,) =0y (H}), (4)

whered,, is the Kronecker delta angl, -) denotes the ensemble average. This is the inner
product in the Hilbert space of Gaussian random variabléseteby:

((€)9(€) = [ 1©g€W(E)de, 5)

The weighti¥/(£) function is multidimensional Gaussian joint probabilitgrgsity function.
Notice that Hermite polynomials are functions of standasdmal random variableg. In the
original random eigenvalue problem (see Kd. (2)), randdotisos are determined by random
variablesf. 6 and¢ are usually not the same. Nonetheless, implementatiomo$tormation
techniques, such as Rossenblatt transformdtion [7] araf Netdel in [8], the random variables
6 can be transformed to standard normal random varigolggh one to one mapping; — &;.
Then the Eq.[(2) will be rewritten as:

[K(&){o(6)} = MM (E)I{(£)}, (6)
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Some analytical transformations between random variadfleemmon univariate distribu-
tions and standard normal variables have been listedin0[9,Arom Eq. [(1), the SFR is the
function of natural frequencies;, and the eigenfactor defined asj¢;,; [11]. Debusschere et
al [12] indicated that multiplication of two random variablexpanded by polynomial chaos
can also be expanded by the same polynomial chaos. Thisgitigmocan save the CPU time.
Moreover, the elements,; and¢;; from the same eigenvector which insinuates that they have
the same converged rate. Consequently, we can use the HRGsBxp to represent the eigen-
factor directly:

Dris = 3 o T (€). 7)
p=0

3.2.2 Coefficients calculation

When implementing HPC, one of the critical issues is to aataly estimate the coefficients.
In the expressions of random eigenvalues and eigenfa@eesKq.[(B) and E4.](7)), the number
of the coefficients is infinite. This formula is not tractabigractice. Generally, the truncation
formula is usually used. The representations of eigengane eigenvectors are rewritten as:

A=Y apHp(&),  dridr; =D cpHy(€), (8)
p=0 p=0

The total number of polynomial chaosi§é,. = P + 1 which is determined by the dimension
N,., of random variableg and the highest ordéy,,, of the HPC.
(er + Nho)!

e T TN ®)

Several methods can be exploited to compute the coefficients

¢ Orthogonalized method|[2]. This method makes use of theogdhality of the polyno-
mial chaos basis. Taking the inner product in Ed. (8) with we have

< M\H, > < buinH, >

a_
P <H?>" P < H?>

: (10)

The denominators in the above expressions have been deltida[3]. However, the nu-
merators are usually evaluated by MCS. To keep the coeftcaaturate, a large quantity
of samples are needed. In that case, we prefer the DSBM $ia@@thogonalized method
takes no advantage of economy.

e Probabilistic collocation method_|[9,13]. As the name define collocation points
are specially selected which correspond to the roots of teniHe polynomial of one
degree higher than the maximum order of current HPC expan$iéth the increase of
the number of random inputs and the order of the expansienntimber of available
collocation points increasing exponentially. For exampieeq. [9), for the caséV,, =
5,6 and N, = 2, 3, the number of the collocation {8V,,, + 1)V = 243, 4096, whereas
N,. = 21,84 respectively. As long as the selected number of the collmtadoints is
equal to the number of HPC expansion terms, we could obtaindgfficients by solving
a set of equations. However, different combination of amlon points may result in
different coefficients. This imposes the instability of ttedlocation method.

5
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e Least square method (LSM). This method belongs to parameéata fitting methods
which will be representative for the whole sample populatather than precisely fitting
each sample point. From this point of view, as long as the Hfamsion model can
contain all information of random outputs, least squarehmeis the first choice thanks
to its facilities and efficiency. L§u} = [a1, ...q,, ...an,. )", {c} = [c1, ...¢p, ...cn,.]T and
[H] ={H,,...,H,,..., Hy, }. Consequently, the least square solutions of the coeftiien
with respect to thg" set of random eigenvalues and eigenfactors are

{a} = (H]'HDTHNY Ak = (H][H]) T H {ordrs} (A1)

Here{\;} and{¢,;¢x;} are the m-dimension vectors, in whishdenotes the number of
random input sample$H ] is the matrix of dimension aof. x N,.. For this work, LSM

is utilized. That signifies when we need random eigenpairs, only, < M are needed
to determine the HPC representation, with which Merandom eigenpairs are readily
gained.

Practically, no matter what method is applied to calculatedoefficients, another critical
issue is that HPC expansion can represent the random elgemgasonably. In the next section,
the mathematical limitation and physical validity of the G#PM will be discussed.

4 MODAL INTERMIXING
4.1 Problem description

In random structures, the modal intermixing/[14] or mod&traction[15, 16] phenomenon
is usually observed when using MCS to model the uncertainfidat means, from one simu-
lation to next, the adjacent modes may exchange wherebtttdm eigenvectors associated
with the same order, actually, contain more than one modaefady, different modes behave
physically different. This is exacerbated for those suiues$ with closed space eigenvalues as
the variances of random inputs increase. That is, matheatigtibecause the area of probability
overlapping of adjacent modes become larger and larger.

Modal intermixing can strongly affect the accuracy of theG#M. In fact, the HPC expan-
sion is originated to represent the solutions of randonedkffitial equations. That signifies one
deterministic HPC expansion just refers to the random swlgtof one family. Accordingly,
for random eigenvalue problem, the accuracy of HPCEM isantaed by averting the modal
intermixing problem. Such mathematical limitation seemsdstrict wide applications of the
HPCEM for random eigenvalue problem. However, this lindtathas great significance in
practice.

In engineering, when concerning the randomness in stretine mean model is usually
treated as a benchmark or reference. The modal behavionsceftain structures should be
consistent with the benchmark. In that case, the modalnmiémg is indispensable to avoid,
the interpretation of which is that the variabilities of dam eigenvalues and eigenvector should
be limited in a reasonably acceptable bounds.

4.2 MAC factor

As indicated above, the variabilities of random eigenvaiued eigenvectors around the ones
of mean model ought to be small in order to remove the modainmking issue. If this property
holds, the random mode shape can be described as a lineamediow 15/ 19] of N mode
shapes of mean model. Thth eigenvector of simulatioh is formulated as:

6
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N
(o} =3 AP {e}”,  1<j<N, (12)
=1

where N is the number of modes considered in Eq. (Aﬁk) denotes the constant weight
coefficient; {¢}§°> represents théh eigenvector of the mean model. When the behaviors of
random models are identical with the ones of mean model,ftbete of the other modes can
be ignored, which is interpreted as the most contributioﬂnmsample{qﬁ}g’“) is from thejth
mode of the mean model. In this situation, the last equatidghe approximate formula is:

o m Ao}, A >0, (13)
Obviously, the angle between eigenvecﬁcz&ﬁﬁ“ and{¢}§0) will meeta§k) ~ 0. In conjunc-
tion with Eq. [13), the direction cosine of these two eigawes has the property:

wy_ 101 (9
B R IC

Here,{gb}y“) . {gb}go) denotes the dot product a#@¢}§0)" is the Euclidean norm. Ed.(114) is
the condition to prevent the random models from the modatinixing. It is actually a variant
of the Modal Assurance Criterion (MAC) [24]. The correspmgdVAC factor is defined by:

w el Ae”?
MAC;; — =
S e ler

The MAC is the criterion to check the consistency between twamles. When the value
approaches unity, the consistency is well observed; ondh&ary, the value is smaller than
1, the behaviors show the violation. The modal intermixinthis right phenomenon from one
simulation to another that reflects the violated modes aghie mean modes. Therefore, based
on Eq. [15), the MAC factor is an indicator of the modal intedimg:

cos(a

~ 1, (14)

0s” (oz(k)) ~ 1 (15)

JJ

(k) . .
MAc;; =1, no modal intermixing

(k)

o (16)
farac,, <1, modal intermixing

4.3 Univariable based strategy

The randomness in modal properties is induced from the randputs. We have to note that
the information of underlying physical models is usuallgufficient so that uncertainties are
always assumed to follow certain distribution. Mean valcees be obtained readily according
to the knowledge of the problems right in hand. On the cowtitis difficult to get the precise
variance since the number of sampling tests is practicatiglls For that reason, by means of
simulation techniques, we need to carefully select the grrepriance to fulfill the practical
requirements, i.e. no modal intermixing.

So as to select the proper variance, a univariable basedgris proposed to check which
random input can cause the modal intermixing and determiveg wariance should be used. In
this strategy, only one parameter is treated as randonmbl@yiathers are deterministic. Special
random inputs around the mean value are picked out to cathter@ssociated modal solutions.
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Let 9 andoy be the mean and standard deviation (SD) of random vartaldleen, the random
inputs are written as:

{é} = [MG +209 pgx309 peLtdoy pe=x 50‘9]T; (17)

where {6} are the selected random inputs of dimensioriThe last four elements dff}

suggest the very rare realizations. If all the associatgdneectors especially the ones cor-
responding the rare random inputs can meet the conditiorgin(fE5), oy is the proper SD;
otherwise, a smaller SD will be used to check until the coodits satisfied. An infeasible
variance is always chosen as the initial one so that the fir@te will be as large as possible.
Because only 8 modal analyses are required for each caadidatnce, regardless of simple
systems or complex systems, this strategy will be compartatiy efficient. Furthermore, this
strategy is insensitive with distributions of random irpsince the special random inputs are
determined by the mean and SD but the types of distributiBosthose reasons, this strategy
is very powerful to avoid the modal intermixing.

5 NUMERICAL EXAMPLES

In the following, two models are investigated to demonstthe efficiency and accuracy of
this procedure to determine the statistics of the SFR. Rarglnuctural parameters are modeled
by normal, lognormal and Gamma distribution respectivehffoth examples.

Due to the similarity of the results, only the cases assediatith normal distribution are
specified. In Section 5.1, a 2-D bridge-like structure: dingupported beam is regarded. For
this model, no modal intermixing problem is taken into cdesation as it belongs to the struc-
ture with largely-spaced frequencies. A building-likeusture: fixed support plate-beam is
investigated in Sectidn 8.2. The modal intermixing problemost be considered due to its high
symmetry.

5.1 Bridge-like structure: simply supported beam
0.08 m

—f‘IIIIIIIIIIIIIIIIII'HI"-lm

25m

Figure 2: Beam model

A 2-D simply supported beam shown in Figl 2. The first three esodave been used to
estimate the SFR. The corresponding natural frequenciéseainean model are; = 321.0
rad/s,w, = 921.9 rad/s andvs = 2065.9 rad/s. Tow deterministic parameters are: Poisson’s
ratiov = 0.3, modal damping ratio coefficieqt= 0.05; the other parameters are independent
random variables, the mean values of which are 7.8 x 103 kg/m?, E = 2.0 x 10! Pa,
L=25m,H =0.1m,W = 0.08 m for density, Young’s modulus, length, height and width
respectively. Two levels of coefficients of variance (COVY)V = 5% andCOV = 10%, are
considered associated with each distribution. All follog/results are related to the node in the
middle.

5.1.1 PDFs investigations

Consider normal distribution. Fi§. 3{a) and Hig. 3(b) shbe probability density functions
(PDFs) of eigenvalues and eigenfactors for the first thredeso The perfect consistence be-
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tween the distributions obtained by HPCEM and DSBM impliest tHPCEM can reflect the
statistics characteristics correctly. The largest erféh®@ PDF estimation occurs for the second
eigenfactor. However, it is emphasized that the magnitsdeiy small which contributes al-
most zero to the SFR. Therefore, such bad approximation afeMocan be ignored. Moreover,
larger COVs of eigenvalues and eigenfactors are observealthe random inputs with large
COVs. The approximate method such as perturbation metheadyalhas difficulty in dealing
with larger COV problems, while the HPCEM can provide theegtable results. Therefore,
the HPCEM is a powerful tool to solve such problems.

Itis revealed that the choice of the current order of HPC samwhsufficient since differences
exist. Note that increasing the order of HPC is profitablenprioving the accuracy. But we have
to pay attention that higher order HPC signifies the more cdgatpnal expense. Accordingly,
there should be a trade-off between the efficiency and acgurée similar results of PDFs can
be seen from the rest four figures in Hig. 3 corresponding tiherdwo distributions.
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Figure 3: PDF of eigenvalues and eigenfactors based on 1€dififles
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5.1.2 SFRinvestigations

Fig.[4 shows a comparison of the statistics of the SFR betweeBDSBM and HPCEM, in
which the maximum, minimum, mean value of the SFR are vergecto each other, respec-
tively. The differences are observed for larger COV (see Bidp),[4(d) and 4(f)). However,

the mean value comparisons represent little differencégtwis very significant for reliability
analysis. For smaller COV, the maximum is smaller.
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Figure 4: SFR based on 10000 samples for beam

The fourth-order HPC expansion are utilized to represemeigenvalues and eigenfactors
for all considered distributions with both COV levels. Acding to Eq. [9), the number of
coefficients is 126. After numerical examinations, 400 das\are chosen to calculate these
coefficients, which is more or less 3 times the coefficients.

In the following, a comparison of average computationaktiwill be specified. So as to
obtain the results in Fid.] 40* modal analyses are executed in the context of DSBM. Yet, for
the HPCEM, only00 modal analyses are carried out by DSBM and plus 10s to daterthe
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coefficients and approximaté* sets of eigenpairs. In conclusion, HPCEM only needs about
4% CPU time of the one needed by DSBM. Efficiency is strongly iowed.

It is evident that the HPCEM could be a general method to déhl @genvalue problem
since good results are obtained for the normal, lognornm@@amma distribution respectively.
From the above, HPCEM has the capacities to estimate the fi#aR\eely, which is of big value
concerning reliability analysis since it can save a lot wfeifrom generating a large quantity of
samples. Moreover, for structures with larger COV, it tusnsthat HPCEM is a powerful tool.
We also find that the LSM works well in estimating the coefitgeof HPC model.

5.2 Building-like structure: plate-beam

In this example, four parameters are selected as randontsinfiney are: density, mean
value u, = 7.8 x 103, COV = 10%; Young’s modulus, mean valuez = 2.0 x 10",
COV = 10%; beam length, mean valyesz;, = 3, COV = 1.75%; plate thickness, mean
valuepupr = 0.02, COV = 2%. The cases with random inputs following lognormal, normal
and Gamma distribution are studied respectively. Morerm#dion about this model are as fol-
lowed: Poisson’s ratio = 0.3, modal damping ratio coefficieqt= 0.01, the height of beam
is 0.04, the width of beam i9.04 and the length of plate (square)is All the unites belong
to SI. Ten modes are used to calculated the displacememinespThe natural frequencies of
the mean model are; = 1.30 rad/s,w, = 1.31, w3 = 1.87, wy = 3.99 rad/s,ws = 4.01 rad/s,
we = H.78 rad/s,w; = 6.48 rad/s,ws = 6.50 rad/s,wy = 9.56 rad/s andv;y = 10.86 rad/s.
294 nodes are in the FE model which is shown in Eilg. 5. The teané related to node 14 in
direction X. Because of high symmetry in this model, mod&timixing must be considered.
The COVs mentioned above are the proper ones selected byitfeiable based strategy.

Figure 5: Plate-Beam model

5.2.1 Modal intermixing

Take the random parameter plate thickness as the example8 Bichematically describes
the MAC factors with respect to 8 special random inputs. foisd that the modal intermixing
always concerns the random model whose plate thicknessssth@an the mean value. The

11



H. Yu, F. Gillot and M. Ichchou

explanation is that as the thickness decreases, the fiexibitreases since the plate belongs to
thin walled structures. The associated structural behswaan be different from the reference
(mean model) more easily. Yet, as to thicker plates, the mbdee a large probability to agree
with the ones of the mean model.
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Figure 6: MAC factor comparison for 8 special random inputs

12



H. Yu, F. Gillot and M. Ichchou

From Fig.[6, it is observed that the modal intermixing alwagsurs with respect to higher
modes, i.e. mode 7, 8, 9 and 10. Moreover, the larger thenaiss, the more probable the
modal intermixing is induced. To that end, it is reasonablavert the modal intermixing by
reducing the variance.

It is also discovered that when we increase the COVs of deasid Young’s modulus to
30%, no modal intermixing occurs, the MAC factors of which is ay@ similar to Fig[ 6(B).
In that case, the random inputs like them can be seen as temesitige parameters; On the
contrary, in cases where random inputs with large COV causia modal intermixing can be
defined as the sensitive parameters, e.g. plate thickness.

5.2.2 Cases study with different distributions

As the probabilistic information of the random inputs are@pr unknown, one can choose
any distribution to describe the randomness as long as thi@esring requirements are ful-
filled. From this point of view, like what we have done in Sentb.1, different distribution
assumptions are applied so that the universality of the HR@&Hevealed again.

The accuracy investigation is shown by the comparison offréguency response in Fig.
[7 for all the three distributions. Probabilistic resultse@n) obtained by HPCEM and DSBM
agree with each other well. It is observed that only 6 peakh®@mean model can be told off.
That implies there exists very close frequencies.
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Figure 7: SFR based on 10000 samples of Plate-Beam

For this model, the fourth-order HPC expansion is utilizBdly 200 samples are needed to
calculate the 70 coefficients by LSM. We have to note that thelrer of samples is again about
3 times of that of the coefficients. Considering the situsim Sectiofh 5]1, we recommend that
the number of the samples equals more or less 3 times the maifibe coefficients in order to
determine the HPC model. The efficiency is still shown by terage CPU time. The DSBM
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needsl0* modal analyses, while the HPCEM only requires 200 modalaealplus 10s to gain
10* sets of eigenvalues and eigenfactors. Alnggst CPU time is saved.

6 CONCLUSIONS

This work concentrates on estimating the statistics of thRe.SThe HPCEM is applied to
solve the involved random eigenvalue problem, the coeffisiare evaluated by the LSM. The
mathematical limitation and physical validity are spdgidiscussed by considering the modal
intermixing problem, which is always encountered when gi$#onte Carlo sampling tech-
nique. The univariable based strategy with conjunctiomhe MAC is proposed to avoid the
modal intermixing problem by reducing the variances of gnedom inputs. It is helpful to se-
lect the proper variances since no adequate informatiopii®s in the physical models. Com-
paring with the DSBM, the HPCEM is an efficient method to abt@&ndom eigen-solutions.
Several factors have significant influences on the accunadticiency of HPCEM:

e The modal intermixing problem should be avoided. In casesravthis problem exists,
the physical behaviors associated with individual randasd@hmay differ from the mean
model (benchmark) and the HPCEM in not acceptable to soeeahdom eigenvalue
problem.

e The proper number of samples used for LSM for the HPC coefisiestimation ought
to be proper. In this work, according to the simulation exaations, the number of the
samples is recommended as about 3 times the number of tHe mrds.

e The dimension of the underlying physical (the number of D&tems has a large influ-
ence of the efficiency. The larger a structure is, the more time modal analysis needs.

e The efficiency is highly improved compared with the DSBM. Hwer, as the number of
random inputs increase,

— the dimension of the HPC expansion increase. It signifiesentiare are needed
to construct the HPC model which is always obtained by theeegpe symbolic
calculation.

— more coefficients have to be evaluated by the LSM. In that,caeee samples have
to be prepared for the least square solution.

Note that the HPCEM can effectively obtain the variabilifyttoe random eigenvalues and
eigenfactors, and thereafter the SFR. This achievememirysvaluable for reliability analysis
as well as reliability based design optimization sinceatality analysis has to be carried out
during each function evaluation of the optimization praged
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