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Abstract. Nonlinear axisymmetric deformation of a toroidal shell under action of internal
pressure is considered. The shell is made of neo-Hookean material and is reinforced by two
system of threads located on parallels and meridians. The nonlinear theory of membranes is
used. For the evaluating deformations and displacements of a membrane the system of the ordi-
nary differential equations of the fourth order is obtained. The method of asymptotical integra-
tion in the case when the meridian radius is much smaller than the parallel one is elaborated.
Comparison of asymptotic and numerical results is performed.
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1 INTRODUCTION

Textile composites and pneumatic structures have become increasingly popular for a variety
of applications in a civil engineering, architecture, aerospace engineering, etc. [1]. Typical
examples of inflatable toroidal shells include tires, pneumatic jacks and inflatable pools. In this
paper the axisymmetric nonlinear deformation under internal pressure of the toroidal shell rein-
forced of fibers is studied. The bending of an inflatable cylindrical membrane was considered
in the paper [2].

2 MAIN ASSUMPTIONS

It is supposed that the toroidal shell is made of a cylindrical textile composite pipe which
contains two systems of threads located on parallels and meridians. The lengths of not deformed
threads are equal accordinglyL andl (see Figure 1a).

Figure 1:Transformation of the cylindrical pipe into toroidal membrane.

We assume that the fibers are disposed frequently enough. After averaging we get the two-
dimensional elastic medium. This medium we consider as an anisotropic membrane. Let’s
close end faces of a pipe and create inside of it the pressureq. Connecting end faces of a pipe,
we get a membrane like the toroidal one (see Figure 1b).

All fibers going on membrane meridians are stretched, but some fibers going on parallels
are compressed ifq < q∗, whereq∗ is the minimal value of pressure at which all parallels are
stretched. A membrane can not hold the compression stresses. Therefore in caseq < q∗ the
part of its surface is covered by folds. If the internal pressureq increases then the area covered
by folds decreases. Atq = q∗ all shell will be stretched.

3 BASIC EQUATIONS

The theory of elastic membranes is a particular case of nonlinear theory of shells developed
in the work of W.T. Koiter, W. Pietraszkiewicz, K.Z. Galimov, A. Libai and J.G. Simmonds [3].
The nonlinear membrane theory has the satisfactory accuracy for sufficiently thin shells.

For a toroidal membrane the following geometrical relations are valid:

λ1 =
ds

ds0

, λ2 =
r

R
, R =

L

2π
,

dr

ds
= − sin θ,

dẑ

ds
= cos θ,

1

R1

=
dθ

ds
,

1

R2

=
cos θ

r
,

(3.1)

wheres0 ∈ [0, l] ands(s0) are the length of the meridian arch before and after deformation,
r(s0) is the radius of a parallel,̂z(s0) is the height of a parallel above a pointO, λ1(s0) and
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λ2(s0) are the stretch ratios of meridians and parallels,R1 andR2 are the radiuses of curvature
of a surface,θ is the angle between a tangent to a meridian and the vertical direction (see
Figure 2).

θ
r

z
0
s
O

Figure 2:Toroidal membrane.

The equilibrium equations in a projection to the tangent to a meridian and the normal to the
membrane give

d(rT1)

ds
+ T2 sin θ = 0,

T1

R1

+
T2

R2

= q, (3.2)

whereq is the internal pressure,T1 andT2 are stress resultants.
Assume that the shell and threads are made of incompressible homogeneous isotropic mate-

rials with elastic potentials
GiΦi(λ1, λ2, λ3), i = 1, 2, 3, (3.3)

whereGi are constants of a material. For the threads going on meridians and parallelsi = 1
andi = 2 accordingly, andi = 3 for a material of the shell. In case of small deformationsGi is
the shear modulus.

Whereas the material is incompressible, equalityλ1λ2λ3 = 1 is valid. Besides for the threads
going on meridiansλ2 = λ3. Therefore the potential (3.3) becomes

G1Φ1(λ1, λ
−1/2
1 , λ

−1/2
1 ) = G1Ψ1(λ1).

For the threads going on parallelsλ1 = λ3 and

G2Φ2(λ2, λ
−1/2
2 , λ

−1/2
2 ) = G2Ψ2(λ2).

For the shell potential (3.3) have the form

G3Φ3(λ1, λ2, (λ1λ2)
−1) = G3Ψ3(λ1, λ2).

The stress resultants entering into equations (3.2) are the sums of the tensile thread forces
and the stresses arising as result of a deformation of the shell:

T1 =
G1N1S1

λ2

dΨ1

dλ1

+
G3h0

λ2

∂Ψ3

∂λ1

, T2 =
G2N2S2

λ1

dΨ2

dλ2

+
G3h0

λ1

∂Ψ3

∂λ2

, (3.4)

whereN1, N2 andS1, S2 are numbers of threads on unit of length in a cross-sectional direc-
tion and the areas of cross-section of threads in the state before deformation for meridians and
parallels correspondingly,h0 is the thickness of the shell before deformation.

If at ϕ ∈ [ϕ∗, π] formula (3.4) givesT2 < 0 then according to membrane hypotheses it is
necessary to putT2 = 0 in system (3.2) whenϕ ∈ [ϕ∗, π].
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4 DIMENSIONLESS VARIABLES

Let’s enter dimensionless variables by formulas

z =
ẑ

R
, s0 = ρϕ, ρ =

l

2π
, µ =

ρ

R
, Q =

qR

G0h0

,

t1 =
T1λ2

G0h0

, t2 =
T2λ1

G0h0

, gi =
GiNiSi

G0h0

, i = 1, 2, g3 =
G3

G0

,

(4.1)

whereG0 is any number,µ < 0.5, and parametersgi characterize relative stiffness of treads in
comparison with one of the shell. Due to a choiceG0 any of valuesgi can be taken equal 1.

Using formulas (3.1), (3.2) and (4.1) we get the following system for unknown variables
θ(ϕ), t1(ϕ), λ2(ϕ) andz(ϕ)

dθ

dϕ
=

µ

t1
(λ1λ2Q− t̂2 cos θ),

dt1
dϕ

= −µt̂2 sin θ,

dλ2

dϕ
= −µλ1 sin θ,

dz

dϕ
= µλ1 cos θ,

t̂2 = max{t2, 0}, 0 ≤ ϕ ≤ 2π.

(4.2)

The function

Φ(λ1, λ2, λ3) =
1

2
(λ2

1 + λ2
2 + λ2

3 − 3)

corresponds to neo-Hookean material. Assume thatΦ1 = Φ2 = Φ3 = Φ. Then after the
introduction of dimensionless variables (4.1) formulas (3.4) take the form

t1 = g3

(
λ1 − 1

λ3
1λ

2
2

)
+ g1

(
λ1 − 1

λ2
1

)
, t2 = g3

(
λ2 − 1

λ2
1λ

3
2

)
+ g2

(
λ2 − 1

λ2
2

)
. (4.3)

Owing to the symmetry of the problem to the planez = 0, to find its periodic solution it is
enough to find the solution of system (4.2), (4.3) satisfying the boundary conditions

θ(0) = 0, z(0) = 0, θ(π) = π, z(π) = 0. (4.4)

5 THE APPROXIMATE SOLUTION FOR COMPLETELY STRETCHED
MEMBRANE

Assume thatµ ¿ 1, t2 ≥ 0 for ϕ ∈ [0, π] and introduce the new variables

α = µ−1t1, β = µ−1(λ1 − 1), γ = µ−1(λ2 − 1), δ = µ−1t2, ζ = µ−1z. (5.1)

Equations (4.2), (4.3) and boundary conditions (4.4) take the form

dα

dϕ
= −µδ sin θ,

dθ

dϕ
=

1

α
[(1 + µβ)(1 + µγ)Q− µδ cos θ],

dζ

dϕ
= (1 + µβ) cos θ,

dγ

dϕ
= −(1 + µβ) sin θ.

(5.2)

µα = (g1 + g3)(1 + µβ)− g1

(1 + µβ)2
− g3

(1 + µβ)3(1 + µγ)2

µδ = (g2 + g3)(1 + µγ)− g2

(1 + µγ)2
− g3

(1 + µγ)3(1 + µβ)2

(5.3)
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θ(0) = ζ(0) = ζ(π) = 0, θ(π) = π. (5.4)

Substitute into (5.2)–(5.4) the asymptotic expansions

α = α0 + µα1, β = β0 + µβ1, γ = γ0 + µγ1,

δ = δ0 + µδ1, θ = θ0 + µθ1, ζ = ζ0 + µζ1.
(5.5)

In the zeroth approximation we get

α0 = Q, θ0 = ϕ, ζ0 = sin ϕ, γ0 = cos ϕ + a0,

β0 = A1 − A2γ0, δ0 = A3γ0 + A4,
(5.6)

wherea0 is the arbitrary constant which can be found at the construction of the first approxima-
tion,

A1 =
Q

4g3 + 3g1

, A2 =
2g3A1

Q
, A3 = 4g3 + 3g2 − 2g3A2, A4 = QA2.

It follows from formulas (4.1), (5.1) and (5.6) that in the zeroth approximation a cross-section
of the membrane is the circumference of the radiusρ. The distance between the center of this
circumference and the center of the torus is equal toR + a0ρ.

The solutions of equations of the first approximation

dα1

dϕ
= −δ0 sin ϕ,

dθ1

dϕ
= β0 + γ0 − α1

Q
− δ0

Q
cos ϕ,

dζ1

dϕ
= β0 cos ϕ− θ1 sin ϕ,

dγ1

dϕ
= −β0 sin ϕ− θ1 cos ϕ,

(5.7)

satisfy the boundary conditions

θ1(0) = ζ1(0) = θ1(π) = ζ1(π) = 0. (5.8)

First equation (5.7) has solution

α1 = (A3a0 + A4) cos ϕ +
A3

2
cos2 ϕ + a1Q, (5.9)

wherea1 is the arbitrary constant. Substitution expressions (5.9) in second equation (5.7) and
taking first condition (5.8) into account we get

θ1 = (A− 3c)ϕ + B sin ϕ− c

2
sin 2ϕ,

where

A = A1 + a0(1− A2)− a1, B = 1− A2 − 2(a0A3 + A4)

Q
, c =

A3

4Q
.

Equalityθ1(π) = 0 holds if
A = 3c. (5.10)

The solution of the third equation (5.7) satisfying the boundary conditionζ1(0) = 0 has the
form

ζ1 = −1

2
(B + A2)ϕ + (A1 − a0A2) sin ϕ +

B − A2

4
sin 2ϕ + c sin3 ϕ.
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Taken into account the conditionζ1(π) = 0 we get equalityB + A2 = 0. Hence

a0 =
Q− 2A4

2A3

.

The substitution of the expression fora0 in formula (5.10) allows one to finda1:

a1 = A1 +
(1− A2)(Q− 2A4)

2A3

− 3c.

The expression for the functionγ1 contains the constant terma2 which can be found at the
construction of the second approximation.

The conditiont2 ≥ 0 at ϕ ∈ [0, π] is necessary for a correctness of the obtained solution.
After the substitution into the inequalityt2 ≥ 0 the approximate expressiont2 ' µδ0, we get
Q ≥ Q0, whereQ0 = 2A3. The numberQ∗ for which by means of the asymptotic method
the approximate expressionQ0 is obtained, represents a characteristic value of dimensionless
pressureQ. In case ofQ < Q∗ the part of the membrane is covered by folds, and atQ > Q∗
the membrane is completely stretched.

6 THE APPROXIMATE SOLUTION FOR PARTLY STRETCHED MEMBRANE

Assume thatt2 > 0 whenϕ ∈ [0, ϕ∗] and t2 < 0 whenϕ ∈ [ϕ∗, π]. Then in the area
ϕ ∈ [0, ϕ∗] all fibers going on parallels are streched and the part of the membrane surface
ϕ ∈ [ϕ∗, π] is covered by folds. At these assumptions equalities

t2(ϕ∗) = 0, δ(ϕ∗) = 0 (6.1)

take place.
At ϕ ∈ [0, ϕ∗] the axisymmetric deformation of a toroidal membrane describe equation (5.2),

(5.3). The functionα′, β′, γ′, θ′ andζ ′ define on the intervalϕ ∈ [ϕ∗, π] satisfy the following
equation

dα′

dϕ
= 0,

dθ′

dϕ
=

Q

α′
[(1 + µβ′)(1 + µγ′),

dζ ′

dϕ
= (1 + µβ′) cos θ′,

dγ′

dϕ
= −(1 + µβ′) sin θ′.

(6.2)

µα′ = (g1 + g3)(1 + µβ′)− g1

(1 + µβ′)2
− g3

(1 + µβ′)3(1 + µγ′)2
(6.3)

We search the solutions of equations (5.2), (5.3) and (6.2), (6.3) satisfying boundary condi-
tions

θ(0) = ζ(0) = 0, θ′(π) = π, ζ ′(π) = 0, (6.4)

α(ϕ∗) = α′(ϕ∗), θ(ϕ∗) = θ′(ϕ∗), γ(ϕ∗) = γ′(ϕ∗), ζ(ϕ∗) = ζ ′(ϕ∗), (6.5)

in the form (5.5). To find the approximate value of the unknown numberϕ∗ we use the asymp-
totic expansionϕ∗ = ϕ0 + µϕ1.

In the zeroth approximation we get the same results, as in case when the toroidal membrane
is completely stretched:

α0 = α′0 = Q, θ0 = θ′0 = ϕ, ζ0 = ζ ′0 = sin ϕ,

γ0 = γ′0 = cos ϕ + a0, β0 = β′0 = A1 − A2γ0.
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It follows from second equality (6.1) that

a0 = − cos ϕ0 − A4

A3

.

The numberϕ0 will be found at the construction of the first approximation.
If ϕ ≤ ϕ0 then for the construction of the first approximation we can use equations (5.7). In

caseϕ ≥ ϕ0 equations of the first approximation have the form

dα′1
dϕ

= 0,
dθ′1
dϕ

= β0 + γ0 − α′1
Q

,

dζ ′1
dϕ

= β0 cos ϕ− θ′1 sin ϕ,
dγ′1
dϕ

= −β0 sin ϕ− θ′1 cos ϕ.

(6.6)

The solutions of equations (5.7) and (6.6) satisfy the boundary conditions

θ1(0) = ζ1(0) = θ′1(π) = ζ ′1(π) = 0, (6.7)

α1(ϕ0) = α′1(ϕ0), θ1(ϕ0) = θ′1(ϕ0), ζ1(ϕ0) = ζ ′1(ϕ0), γ1(ϕ0) = γ′1(ϕ0). (6.8)

In a considered case formulas (5.7) and (5.8) suit for the definition of the functionsα1(ϕ)
andθ1(ϕ). Taken into account first equation (6.6) and first condition (6.8) we get

α′1 = α1(ϕ0) = −A3

2
cos2 ϕ0 + a1Q.

It follows from second equation (6.6) and third condition (6.7) that

θ′1 =
(
A + 2c cos2 ϕ0

)
(ϕ− π) + (1− A2) sin ϕ, (6.9)

The substitution of expressions (5.8) and (6.9) into second condition (6.8) gives the equality

(A/c + 2 cos2 ϕ0)π = 3ϕ0 − 5 sin ϕ0 cos ϕ0 + 2ϕ0 cos2 ϕ0. (6.10)

Whereas for partly stretched toroidal membrane equality (5.9) is not valid, the expression for
the functionζ1(ϕ) differs from the expression obtained in the previous section:

ζ1 = (A1−a0A2) sin ϕ+(A−3c)(ϕ cos ϕ− sin ϕ)− 1

2
(B +A2)ϕ+

B − A2

4
sin 2ϕ+ c sin3 ϕ.

(6.11)
The solutionζ ′1(ϕ) of the third equation (6.6) satisfying last boundary condition (6.7) has the
form

ζ1 = (A1−a0A2) sin ϕ+
(
A− 2c cos2 ϕ0

)
[(ϕ−π) cos ϕ−sin ϕ)+

1

2
(π−ϕ)+

1− 2A2

4
sin 2ϕ.

(6.12)
Substitute equalities (6.11) and (6.12) into third condition (6.8). Taking in account formula
(6.10) after transformations we obtain the following equation for the evaluatingϕ0:

sin ϕ0 − ϕ0 cos ϕ0 = πp, p =
Q

Q0

. (6.13)

Equation (6.13) has no an explicit solution, however its rootϕ0 ∈ [0, π] depends only on one
parameterp ∈ [0, 1]. Therefore for the estimation of the value of this root it is possible to use
Figure 3.
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Figure 3:Plot of the functionsϕ0(p).

7 RESULTS

Consider three cases:

1) g1 = g2 = 1, g3 = 0; 2) g1 = g2 = g3 = 1/2; 3) g1 = g2 = 0, g3 = 1.

In the first case the stiffness of the threads only is taken into account, influence of the stiffness
of the threads and the shell in the second case are equal and in the third case the threads are
absent.

Table 1 lists the values of the dimensionless characteristic pressureQ∗ for these cases. The
second and third columns contain the values calculated by a numerical solution of equations
(4.2) and (4.3) forµ = 0.1 andµ = 0.01. The last column contains the valuesQ0 = 2A3 found
by the asymptotic approach. The error of the asymptotic formulaQ∗ ' Q0 decreases with the
parameterµ.

Q∗Case
µ = 0.1 µ = 0.01 Asymptotics

1) 4.12 5.71 6.00
2) 4.59 6.15 6.43
3) 4.71 5.78 6.00

Table 1:The values ofQ∗ for three cases.

The boundariesϕ∗ of the area covered by folds for the caseg1 = g2 = g3 = 1/2 and for
the different values of the dimensionless pressureQ are given in Table 2. The second and third
columns contain the values calculated by a numerical solution of equations (4.2) and (4.3).
The last column contains the rootϕ0 of equation (6.13). The error of the asymptotic results
decreases with theµ andQ.

8 CONCLUSIONS

The application of the asymptotic approach to the problem of the toroidal membrane defor-
mation under internal pressure permits to obtain the simple approximate solution. In particular,
the explicit expressionQ0 for the minimal dimensionless pressureQ∗ at which folds on the shell
are not formed is found. It is shown that the relative stiffness of treads influences value of the
characteristic pressureQ∗ a little.
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ϕ∗Q
µ = 0.1 µ = 0.01 Asymptotics

1 1.28 1.20 1.19
2 1.67 1.58 1.56
3 2.04 1.87 1.85
4 2.51 2.16 2.12

Table 2:The values ofϕ∗ for the differentQ.

The equation for the evaluating the boundary of the membrane area covered by foldsϕ∗ is
derived. This equation contains only one non-dimensional parameterQ/Q0. Forµ = 0.1 and
Q < 3 the error of the asymptotic results for the boundaryϕ∗ in comparison with numerical
ones is less than 10%.
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[1] E. Oñate, B. Kr̈oplin, Textile composites and inflatable structures. Springer, 2005.

[2] A.M. Kolesnikov, L.M. Zubov, Pure bending of a cylindrical membrane with internal pres-
sure. W. Pietraszkiewicz, C. Szymczak eds.Shell Structures: Theory and Applications,
Proceedings of the eighth SSTA Conference, Jurata, 129–133, Balkema, 2005.

[3] A. Libai, J.G. Simmonds,The Nonlinear Theory of elastic shells. Cambridge: Univ. Press,
1998.

9


