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Abstract. Nonlinear axisymmetric deformation of a toroidal shell under action of internal
pressure is considered. The shell is made of neo-Hookean material and is reinforced by two
system of threads located on parallels and meridians. The nonlinear theory of membranes is
used. For the evaluating deformations and displacements of a membrane the system of the ordi-
nary differential equations of the fourth order is obtained. The method of asymptotical integra-
tion in the case when the meridian radius is much smaller than the parallel one is elaborated.
Comparison of asymptotic and numerical results is performed.
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1 INTRODUCTION

Textile composites and pneumatic structures have become increasingly popular for a variety
of applications in a civil engineering, architecture, aerospace engineering,ltcTypical
examples of inflatable toroidal shells include tires, pneumatic jacks and inflatable pools. In this
paper the axisymmetric nonlinear deformation under internal pressure of the toroidal shell rein-
forced of fibers is studied. The bending of an inflatable cylindrical membrane was considered
in the paper2)].

2 MAIN ASSUMPTIONS

It is supposed that the toroidal shell is made of a cylindrical textile composite pipe which
contains two systems of threads located on parallels and meridians. The lengths of not deformed
threads are equal accordinglyand! (see Figure 1a).
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Figure 1:Transformation of the cylindrical pipe into toroidal membrane.

We assume that the fibers are disposed frequently enough. After averaging we get the two-
dimensional elastic medium. This medium we consider as an anisotropic membrane. Let's
close end faces of a pipe and create inside of it the pregsi@ennecting end faces of a pipe,
we get a membrane like the toroidal one (see Figure 1b).

All fibers going on membrane meridians are stretched, but some fibers going on parallels
are compressed if < ¢., whereg, is the minimal value of pressure at which all parallels are
stretched. A membrane can not hold the compression stresses. Therefore gn<cagehe
part of its surface is covered by folds. If the internal presgurnereases then the area covered
by folds decreases. At= g, all shell will be stretched.

3 BASIC EQUATIONS

The theory of elastic membranes is a particular case of nonlinear theory of shells developed
in the work of W.T. Koiter, W. Pietraszkiewicz, K.Z. Galimov, A. Libai and J.G. Simmo3iis [
The nonlinear membrane theory has the satisfactory accuracy for sufficiently thin shells.

For a toroidal membrane the following geometrical relations are valid:

d L
A1:i7 )\2117 Rzi,

dSo R 2T (31>
@——sine @—COSQ i—@ L—COSQ .
ds ’ ds ’ R, ds’ Ry, 1’

wheres, € [0,{] ands(sg) are the length of the meridian arch before and after deformation,
r(sp) is the radius of a parallek(sy) is the height of a parallel above a poit \;(sy) and
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Xo(sg) are the stretch ratios of meridians and parall&isand R, are the radiuses of curvature
of a surfacef is the angle between a tangent to a meridian and the vertical direction (see
Figure 2).

Figure 2:Toroidal membrane.

The equilibrium equations in a projection to the tangent to a meridian and the normal to the

membrane give
d(’l"Tl) . T1 TQ
T =0 — + == 3.2
7. 1+ Tasin B TR O (3:2)
whereq is the internal pressur&; and7; are stress resultants.
Assume that the shell and threads are made of incompressible homogeneous isotropic mate-
rials with elastic potentials

Gi®i(A, A, Ag), i=1,2,3, (3.3)

where(G; are constants of a material. For the threads going on meridians and paraHels
and: = 2 accordingly, and = 3 for a material of the shell. In case of small deformaticiss
the shear modulus.

Whereas the material is incompressible, equality, \; = 1 is valid. Besides for the threads
going on meridiana, = A3. Therefore the potential (3.3) becomes

Gi®r (A, A2 AT = Ghw ().
For the threads going on parallels = A3 and
Ga®s(Aa, Ay 2 05 %) = GaUs(Ny).
For the shell potential (3.3) have the form
G3®P3(A1, Ao, (M do) ) = GaWs(Ag, Ao).

The stress resultants entering into equations (3.2) are the sums of the tensile thread forces

and the stresses arising as result of a deformation of the shell:
GlNISI d\Ijl Ggho 8\113 GQNQSQ d\IJQ Ggho 8\113
Tl = + ) T2 = + )
Ao d)\ Ao 0N A1 d) A1 O\

where N1, N, and Sy, S5 are numbers of threads on unit of length in a cross-sectional direc-
tion and the areas of cross-section of threads in the state before deformation for meridians and
parallels correspondinglyi, is the thickness of the shell before deformation.

If at » € [¢., 7] formula (3.4) givesl, < 0 then according to membrane hypotheses it is
necessary to puk, = 0 in system (3.2) when € [¢., 7].

(3.4)
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4 DIMENSIONLESS VARIABLES
Let’s enter dimensionless variables by formulas

z l p 0 qR
= — S — [ —_— — _
RJ 0 PP, P 271" R’ Gohg’ (4 1)
Ti s To) GiN;S; . G '
t - _ i=1,2,

= Goh()’ 2 — G0h07 g = G()ho )

whereG, is any numbery < 0.5, and parameterg characterize relative stiffness of treads in
comparison with one of the shell. Due to a chaiggany of valuesy; can be taken equal 1.
Using formulas (3.1), (3.2) and (4.1) we get the following system for unknown variables

0(¢), t1(¢), Aa(¢) andz(p)

do - dt A

& = Z()\l/\QQ — tycos ), d—; = —utysin g,

d d

ﬁ = —uAsinf, & _ JA1 cos B, (4.2)
de dy

ty = max{ty,0}, 0< ¢ <27

The function )

corresponds to neo-Hookean material. Assume dhat= &, = &3 = &. Then after the
introduction of dimensionless variables (4.1) formulas (3.4) take the form

1 1 1 1
- >\—,>+g (x_), t:g<>\—>+g<)\—>. 13
1 3(1 )\%)\% 1 1 A% 2 3 2 )\%)\g 2 2 )\% ( )

Owing to the symmetry of the problem to the plane- 0, to find its periodic solution it is
enough to find the solution of system (4.2), (4.3) satisfying the boundary conditions

0(0)=0, 2(0)=0, O(r)=m 2(r)=0. (4.4)

5 THE APPROXIMATE SOLUTION FOR COMPLETELY STRETCHED
MEMBRANE

Assume that, < 1, t; > 0 for ¢ € [0, 7] and introduce the new variables
a=ptt, B=p—1), y=pe—1), d=pTtt, (=plz (5.1)

Equations (4.2), (4.3) and boundary conditions (4.4) take the form

d ag 1
= —posing, S = —[(1+ pB)(1+ py)Q — pdcos ],
dy dp « (5.2)
350: (1 + ppB)cosd, fl; = —(1 4+ pf)sinb.
91 93

pa = (g1 + g3)(1 + pufB) — (14 pf)? B (14 pB)3(1 4 py)?

B _ go o gs
pé = (g2 + g3)(1 + py) (14+py)? (14 py)3(1 + up)?

(5.3)

4



Sergei B. Filippov

0(0) = ¢(0) = ¢(m) =0, O(m) = (5.4)
Substitute into (5.2)—(5.4) the asymptotic expansions

a =+ pay, B=0+pub, v=v+pn,

(5.5)
0 =200+ por, 0=00+pb, ¢=C+ pd.
In the zeroth approximation we get
ag=Q, by=, = sin o, = cos ¢ + ag,
0=Q 0=v, Co ¥, 7o ¥ 0 (5.6)

Bo = A1 — Aavo, 0o = Az + Ay,

whereqy is the arbitrary constant which can be found at the construction of the first approxima-
tion,

293 A
A1=L7 Ay = %5 L
4gs + 3q1 Q

It follows from formulas (4.1), (5.1) and (5.6) that in the zeroth approximation a cross-section
of the membrane is the circumference of the ragiu3he distance between the center of this
circumference and the center of the torus is equat te ap.

The solutions of equations of the first approximation

Az =493 + 392 — 2932, Ay = QA,.

d do 0
ﬂ:—éosingp, 712ﬁ0+’70_ﬂ_70cosg07
dy dy Q
(5.7)
G . dyn .
—— = focosp —O1sinyp, —— = —[fysinp — 6 cosp,
de de
satisfy the boundary conditions
01(0) = ¢1(0) = 01(m) = Gi(m) = 0. (5.8)
First equation (5.7) has solution
A
ay = (Asag + Ay) cosp + 73 cos® ¢ + a;Q, (5.9)

wherea; is the arbitrary constant. Substitution expressions (5.9) in second equation (5.7) and
taking first condition (5.8) into account we get

0, = (A—3c)p+ Bsinp — gsin2cp,

where

A:A1+a0(1—A2)—a1, le—AQ—W, C::fc;.
Equalityd, (7) = 0 holds if
A =3c. (5.10)

The solution of the third equation (5.7) satisfying the boundary cond{igh = 0 has the

form
B — A,

1 . . .
G =—5(B+ A2)p + (A1 — agAg) sinp + sin 2¢ + csin® .
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Taken into account the conditign(r) = 0 we get equalityB + A, = 0. Hence

Q —2A4
245

ag =

The substitution of the expression fayin formula (5.10) allows one to find :

(1 - A2)(Q — 244)
2A3

a; = A + — 3c.

The expression for the function contains the constant term which can be found at the
construction of the second approximation.

The conditiont, > 0 aty € [0, 7] is necessary for a correctness of the obtained solution.
After the substitution into the inequality > 0 the approximate expression ~ 1y, we get
@ > Qo, whereQ, = 2A;. The number), for which by means of the asymptotic method
the approximate expressi@p, is obtained, represents a characteristic value of dimensionless
pressurg). In case ofQ < Q. the part of the membrane is covered by folds, an@ at Q.
the membrane is completely stretched.

6 THE APPROXIMATE SOLUTION FOR PARTLY STRETCHED MEMBRANE

Assume that, > 0 wheny € [0,¢,] andt, < 0 wheny € [p., m]. Then in the area
¢ € [0,p,] all fibers going on parallels are streched and the part of the membrane surface
¢ € [p«, 7| is covered by folds. At these assumptions equalities

ta(ps) =0, d(ps) =0 (6.1)

take place.
At ¢ € [0, p.] the axisymmetric deformation of a toroidal membrane describe equation (5.2),
(5.3). The function/, 3, +/, 8’ and(’ define on the intervap € [p., 7] satisfy the following
equation
do! 0 o’ Q

(14 pB) (1 + '),

dp 7 dp o 2
i N P (6.2)
@_(1+uﬁ)cosﬁ, @——( + pp’) sin 6.
;o N a1 _ gs
pol = (gl + 93)(1 + Mﬁ) (1 + ,uﬁ’)Q (1 n N6/>3(1 n M’V/)Q (63)

We search the solutions of equations (5.2), (5.3) and (6.2), (6.3) satisfying boundary condi-
tions
0(0) =¢(0) =0, () =m ((m)=0, (6.4)
a(ps) =d(pe), 0(p) =0 (0s), (o) =7(0s), Clp) =C(0s),  (6.5)

in the form (5.5). To find the approximate value of the unknown numhewve use the asymp-
totic expansionp, = ¢g + ;.

In the zeroth approximation we get the same results, as in case when the toroidal membrane
is completely stretched:

OZQIOéBZQ, 00:96:907 €0:C6:Sin907
Yo = =cosp+ag, [y =By = A — A.
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It follows from second equality (6.1) that

The numbery, will be found at the construction of the first approximation.
If o < ¢q then for the construction of the first approximation we can use equations (5.7). In
casep > ¢, equations of the first approximation have the form

do, do) o
1:07 71:50_'_70_71
dei - dvy : ,
—= = [fycosp — O sinp, = —[psinp — 0] cos .
dep di
The solutions of equations (5.7) and (6.6) satisfy the boundary conditions
01(0) = G1(0) = 0y (m) = ¢i(7) = 0, (6.7)

ar(po) = (o), 01(wo) = 01 (o), Cilpo) = Ciwo),  Mlva) = 71 (w0)- (6.8)

In a considered case formulas (5.7) and (5.8) suit for the definition of the funetidps
andd; (). Taken into account first equation (6.6) and first condition (6.8) we get

A
o) = (o) = —?3 cos” o + a1Q.

It follows from second equation (6.6) and third condition (6.7) that
0, = (A + 2c cos? gpo) (p—7)+ (1 — Ay)sing, (6.9)
The substitution of expressions (5.8) and (6.9) into second condition (6.8) gives the equality
(A/c+ 2cos® po)m = 3py — 5sin gg cos vy + 200 cos? pq. (6.10)

Whereas for partly stretched toroidal membrane equality (5.9) is not valid, the expression for
the function(; (¢) differs from the expression obtained in the previous section:
B — AQ . .. 3
sin 2+ csin” .
(6.11)
The solution; () of the third equation (6.6) satisfying last boundary condition (6.7) has the
form

1
G = (A1 —apAz)sinp+ (A—3c)(pcosp—siny) — §(B+A2)<p+

1 1—2A
¢ = (A1 —agAs) sin p+ (A — 2ccos? go()) [(p—) cos p—sin )+ 5(#—@) + 2 sin 2.

(6.12)
Substitute equalities (6.11) and (6.12) into third condition (6.8). Taking in account formula
(6.10) after transformations we obtain the following equation for the evaluatjing

sin g — o Cos Yy = TP, = Q (6.13)
Qo
Equation (6.13) has no an explicit solution, however its rapt [0, 7] depends only on one
parametep <€ [0, 1]. Therefore for the estimation of the value of this root it is possible to use

Figure 3.
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Figure 3:Plot of the functionsyy(p).

7 RESULTS

Consider three cases:

1) g1=62=1,93=0; 2) g1=02=93=1/2; 3) g1=0g2=0, g5=1.

In the first case the stiffness of the threads only is taken into account, influence of the stiffness
of the threads and the shell in the second case are equal and in the third case the threads are
absent.

Table 1 lists the values of the dimensionless characteristic pre@sum these cases. The
second and third columns contain the values calculated by a numerical solution of equations
(4.2) and (4.3) fop, = 0.1 andy = 0.01. The last column contains the valu@s = 245 found
by the asymptotic approach. The error of the asymptotic forrouylaz ), decreases with the
parametey..

Case Qs
uw=0.11]p=0.01| Asymptotics
1) 4,12 5.71 6.00
2) 4.59 6.15 6.43
3) 4,71 5.78 6.00

Table 1:The values ofy, for three cases.

The boundaries, of the area covered by folds for the cage= ¢g» = g3 = 1/2 and for
the different values of the dimensionless presspige given in Table 2. The second and third
columns contain the values calculated by a numerical solution of equations (4.2) and (4.3).
The last column contains the rogt of equation (6.13). The error of the asymptotic results
decreases with the and Q.

8 CONCLUSIONS

The application of the asymptotic approach to the problem of the toroidal membrane defor-
mation under internal pressure permits to obtain the simple approximate solution. In particular,
the explicit expressiofy, for the minimal dimensionless pressupe at which folds on the shell
are not formed is found. It is shown that the relative stiffness of treads influences value of the
characteristic pressurg, a little.
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Q P
pw=0.11]p=0.01| Asymptotics

1 1.28 1.20 1.19

2 1.67 1.58 1.56

3 2.04 1.87 1.85

4 2.51 2.16 2.12

Table 2:The values ofp, for the differentQ.

The equation for the evaluating the boundary of the membrane area covered by.fodds
derived. This equation contains only one non-dimensional paraf¢t@s. For . = 0.1 and
@ < 3 the error of the asymptotic results for the boundaryin comparison with numerical
ones is less than 10%.
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