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Abstract. In the paper the problem of the shear vibration of a finite periodic composite beam
with uncertain parameters as the model of a high building under a stochastic excitation is
considered. The solution of the problem was found using the random dynamic influence
function which allows applying the perturbation method while the average tolerance
approach allows passing from differential equations with periodic variable coefficients to
differential equations with constant coefficients. Different types of uncertainty of the structure
parameters and the excitation process have been considered, namely: fuzzy numbers, random
variables, random functions, fuzzy random variables, fuzzy random functions and fuzzy
stochastic processes. This allows a wide analysis of complex problems of the shear vibrations
of periodic composite beams with fuzzy random parameters under fuzzy stochastic excitations.
Much attention has been focused on for obtaining the solution in the most genera case.
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1 INTRODUCTION

The dynamics response of the sheared beams or sheared platededs of multistorey
buildings was subjects of research by some authors [1-4]. Ihealidses the homogeneous
models have been assumed which do not exactly describe the real structuréoresaf the
building consists of two parts with different stiffnesses andsesad-or this reason as a model
of the building we can consider a sheared periodic beam. In neest itas assumed that the
parameters of the structure are deterministic. On the other hanstractural parameters like
geometry characteristics, material and damping properties imgghhcertain to some extent.
Their uncertainty may have a strong influence on the reliability of the wteuict the dynamic
context and be the crucial factor which determines the safetlgeostructure. Dynamic
analysis of structures often involves two kinds of uncertainty. Otieeaf is the randomness
and the other one is the fuzziness which describe imprecision. The raradhility is
described by use of probability theory and the imprecision by ufgzpy sets. Very often
sufficient statistical data are not available in this casezay function (fuzzy process) or
fuzzy random variable (fuzzy stochastic process) is possible to employ folimyqul&poses.
The concept of fuzzy random variables allows to combine both randomness and imprecision.

In the paper the problem of the shear vibration of a finite pericalinposite beam as the
model of high building with uncertain parameters (fuzzy random \Jesplinder a fuzzy
stochastic excitation is considered. The solution of the problemonas based on the fuzzy
random dynamic influence function while the average tolerance agpadlows passing from
differential equations with periodic variable coefficients intofedéntial equations with
constant coefficients. The tolerance averaging method proposed hyak/{b-7] has several
advantages and may be used as an alternative to the well-knowgdronation method. The
idea of random dynamic influence function has been presented in [8-1(|izRyeset theory
was initiated by Zadeh [11]. The concept of fuzzy random variabkes introduced by
Kwarkernaak [12], Puri and Ralescu [13] and combines both randomness @nedismon.
The dynamic response of the system with deterministic paresneteler fuzzy stochastic
excitation has been considered among other in the papers [14-20]. flindodeof the
variance of fuzzy random variables can be found in the papers [2THS8hpplication of the
uncertain forecasting in engineering and computational mecharsed lba fuzzy stochastic
processes is presented in the monographs [24,25].

2 GENERAL SOLUTION

Let us consider stochastic vibrations of a periodic straighileast beam of length with
a varying cross-section as a model of the building. The differesgigtion of motion of the
sheared beam has the form

—IK(bg, Xy, , (b, x,1)], +c(b,, )4, (b,, x,t)+mb, , x)d, ©, ,x,t)=p, xt), (1)

where u, (b,,x,t) denotes the vertical displacement of the be&rth,,x)=(xFG), (x),

m(b,,x), c(b,,x) are, respectively, the shear rigidity of the beam, mass dfeitw per unit
length and the damping coefficient, all of which are random functafnshe spatial
coordinatex, xD[O,h]. Furthermore,G is the shear modulus of elasticity, is the shear

stiffness factor that depends on the cross-sectional shapE ianthe cross-sectional area.
The functionp, (x,t) represents the excitation process of the beam in space andltime

symbol ()}, and the superimposed dot denote differentiation in space and time, ivegpect
The fuzzy random parameters of the beam are presented as abyedtor,b,,,..0, T,
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where the superscrift denotes the transposition operation. It is assumed that the expected
value E[b,] and the covariance matrig,, =[cov(b, b, )], =E [b,b;]-E[b,] E[b] are

known. The symboE[E] is the expectation operation. Possible random beam parameters

include: the Kirchhoff modulus, the damping coefficient and the dimensioniseobeam

cross-section. It is assumed that the excitation process ofrtintuge is a fuzzy stochastic
process. Additionally, we assume that the structural and load e@m@mare mutually
independent. The solution will be found within the correlation theory; threreéxact

knowledge of the probability distributions of these random variables is not required.

In particular cases we can consider different types of the taimdés of the structure and
load parameters. They are fuzzy numbers, random variables (randotioms) or in most
general cases fuzzy random variables (fuzzy random function - fuzzy stochastisgas).

The boundary conditions of the cantilever beam have the form

U,(b,,04)=0, u,, b, ht) 0 o)

In the particular case whé(b,,x)=K(b,) = («kGF), =const, c(b,,x)=c(b,)=const and
m(b,,x) =m(b,) =const, Eq. (1) has the form

K(b,)u, (b, x,t)+c,)u, b,,x,t)+mb, ), b, .xt)=p, )f, ). (3)

The standard methods of analyzing the rod dynamics are effectiyef the coefficients in
Eqg. (1) are constant. The quantiti€gb,,, x), c(b,,x)and m(b,, x) in this study are modeled
as periodic fields and are rapidly varyingeriodic functions

K(,,x)=K({,,x+I), cb,,x)=cb, . x+l), mb, x)=mp, x+I) (4)
The lengthl is the height of a single storey of the building and is sasattompared with the

height h of the building(l << h).

It is difficult to find the solution of Eq. (1) because the Gordnts are strongly periodic. We
solve Eq. (1) basing on the concepts of the tolerance-averaged medelUSing this
procedure it is possible to transform Eq. (1) to the form of eesysf averaged differential
equations with constant coefficients. This approximation describeffeéed of the structural
length parameter of the beam. We defime (0, h) , A(X) =(x-1/2,x+1/2), | <<h,,
x0Q°%, Q°={x0Q°:Ax0Q} . The periodic functions will be averaged by means of the
formula

<g(x)>=1 [ g(@ndé, x0Q°, ©

where g(x,t) is an arbitrary function defined d2 = (0,h).
We base on Conformability Assumption [5-7] that foection u(x,t) conforms to thd-

periodic structure of the beam and together withtalderivatives it is periodic-like. Let us
introduce the following decomposition of this fuict

u,(b,,xt)y=w, o, xt)+v, bO,,xt), (6)
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where w(b,, x,t) is the averaged part of the functiagb,,x,t) and v(b,,x,t) will be
referred to as the fluctuating part of the functidb,,, x,t).

The modeling decomposition from Eq. (6) makes it possible to introduxditwls of basic
unknowns, namely functiow (b, x,t) which is a slowly varying function andb ,, x,t) is an

oscillating |-periodic-like function. Using Galerkin approximation we obtain thettlating
function in the form

Vo (D, X,1) = 9" (X)v; (b, X ), (1)

(the summation convention ovA=1,2,... holds), wherg”(x) are a priori known oscillating
I-periodic-like functions and the new unknown amplitudgé_, x,t)are sufficiently regular
and slowly varying functions.

The functionsg”(x) should satisfy conditions

|
x+E
<g*(%>=7 [ 9*(9ck=0 ®)
and

|
X+

<mlb, "0 >=T [ mib, . )" (k=0 ©)

|
X——
2

Using the decomposition of Egs. (6) and (7) andntaknto account the Tolerance
Averaging Approximation [5-7] after some manipubais we obtain the following system of
N+1 equations with constant coefficients for unknowuandtions w(b,,x,t) and

vA(b,,xt), for xOQ,

= <K(b,,X) > W, . (b,, Xt} <K, ,Xx)g; X)>V,, O, 1)
+<c(b,, x) > W, (b, , x,t)+ <m(, ,.x)>W, b, xt)=<p, Xt)>,
<K(b,,¥)g5 (%) > W, (b,,xt)}+ <K, ,x)g; x)gx x)>Vv; O, xt) (10)
+<c(b,, x)9° (¥)g" (x) >V, (b, , x,t) +
<m(b,,x)g*(x)g"(x) > V7 (b, x,t) =< p, (x,t)g" (x)>,
where A, B=12,.. N
It has been assumed that the damping coefficiéfitiuc(b,,x) =28m(,,x), where

B=const and hence<c(b,,x)g”(x) >=0. The derivation of the beam equations (10) is
analogous to the derivation of the rod equatioips [8

2.1 Eigenvalue problem
Let us consider a deterministic eigenvalue problethis case we assume
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|
X+

<mlb, "0 >=T [ mib, . )" (k=0 (11)

and
p,(xt)=0, c(x)=0 (12)
After introducing (11) to equations (10) and takintp account (12) we obtain fok=B =1
<K >W,, ()+ < K()@5(3) >V(x) + @ <m(x) >W(x) =0,
<K(X)gy(x) >W, (X)+ < KOI[g,(¥]* >VI(X) + (13)
—a <m(x)[g'(¥]* >V (X =0.
From the second of Egs. (13) one obtains
<K(x)g,(x) >
o’ <m(x)g'(x)g'(x) >~ <K(¥)g,(x)g5(x) >

Vi(x) = W, (%). (14)

Introducing relationship (14) to the first of E§$3) one obtains the differential equation in
the following form

: [< i<(x)g,lx(x) >]? : : MW,_(%)
@ <m(x)g'(x)g*(x) > - < K(X)g5(X)g5(x) > (15)

+af <m(x) >W(x) =0,

[<K(x) >+

which can be written shortly as
W, (x) + AW(x) =0, (16)
where

2 _ o' <m(x) ><m(x)(g'(x))°* > —w’ <m(x) >< K(X)(gx(x)) *>
o <K()><m(x)(g(x))* >~ <K () ><K((g5(9)*>+H< K (g} (x) >)?

17)
The solution of the equation (16) has the form

W(x) = AsinAx+ B cosix (18)
Boundary conditions for cantilever beam have thienfo
w(0)=0, W,(h)=0 (19)

Therefore the eigenfunctions and eigenvalues aendgpy
W, (X) =sinA x , Anzg(n—%), n=123 (20)

From the relationship (14) one obtains

<K(X)g,(x) >4,
1 1 Y 1 1 COSAnX’
o, <m(x)g'(x)g'(x) > = <K(X)g,(x)g,(x) >

VH(x) = (21)
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and the eigenfrequencies

_1,<K(x)(g,(x)*> 2 SKO>

W2 emx)(gi () > " <m(x)>

, [SKOGE0> <K=, . (SKRGX )
W Smeo(@ o> T <meo > T <m0 ><m(g'00)* >

In the case of a uniform beank (x) = K = const., m(x) = m=const.) the eigenfrequencies

have the form
/K
=A.—=AV.. 23
% n m n-s ( )

The quantityv, =+ K/ m represents the shear wave velocity in the beam.

(22)

}.

2.2 Forced vibration of the beam

The aim of this chapter is to find the general solution for prdisabicharacteristics of the
system response for arbitrary excitation stochastic proge$s,t) =q,(x)f,(t), where
g, (x) is a fuzzy deterministic function. The problem is being solved witiéncorrelation

theory. When the parameters of Egs. (10) are random the problem salvédxt only if the
right sides of the equations (10) are deterministic. To overcome thesaltigave introduce

the random dynamic influence functionl (b,,x,t)=H (b, x,;t)+g"xX)H: (0, ,xt)
(RDIF) [8,9] which satisfies the following equations
= <K(by,X) > H 0 (0, X,0)- < K0, ,X)g% (X) > Hy 0, X 1)+
+<c(b,,x)>H,, (b, xt)+<mp,,x)>H, b, xt)=<g, ®X)>5t),
<K(b,,¥)95(x) > H,, (0, Xt <K, ,x)g5 (x)g5 ) > Hy, ©,x.t)+
+<c(b,,x)9" (09" (¥) > Hy (b, x, )+ <m(b,,x)g® (x)g" (x)> Hy, (b, ,x,t)= 0,

(24)

with initial conditions
H,,(,,x0=0H,0©, x,0=0H: b, x,0F OHA I, x ,05 ( (25)

If the random dynamic influence functidt(b, x,t)=H (b, x,t)+g" xX)H (©,xt) is known
then the response of the beam to be found candseed in the following form:

u,(b,,x,t)=w, (b,,x,t)+g" XV, b, ,x,t)=Jt-Ha b, xt-7)f, ¢ dr=
: t ’ (26)
=ija(ba,x,t—r)fa(r)dr+gA(x)ijé,(ba,x,t—r)fa T )dr.

fo to

where ift, =0 then one considers transition vibrations andtfer—« one considers the
steady-state vibration case.

On the basis of the relationship (26) we can oltta#rexpected value of the beam response
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Efu, (b, x, )], = Ew,(b,, x )], + 9" (X Hv,(b, x1)], =

= j’ E[H,(b,, xt-71)] E f (7], dr =

= [ E[H, o (b,, Xt =1)], B f,(2)] , 7+ g% [E H (b, X t=0] B f ] ,dz

and the covariance of the displacement

Cov,,, [%,%.t,t)] =

4Lt

=”E[Ha (b Xt =7 H, (by Xot,=75) | Covy [7,,7], drdr 5+

foto

4t

+”CovHHa [0 %t =7t =7, E[ fa(rj)]a E[ f, (TZ)L dr dr,

o to

where the covariance of RDIF can be estimated from
COVyy, [% %, t0t5], = E[H, (D Xut) Hy (b X0t )|+
~E[H, (b, %.t) ] E[H, (b, %t,)]
and Covy,_ [Tl, T2]a denotes the time covariance of the excitationgorc
The variance of the beam displacement is equal to
o (xt)=Cov,, [x.xtt] =

tt
= “ E[H, (b,,xt-1,)H, (b, .xt-7,)|Cov, [r,.1,] drdr,+

foto

+j“t'CovHHa [x.xt=71,t=7,] E[ f (71)],, E[ f (TZ)L dr dr,.

fo to

Due to the relationship (27) one obtains

Elu, (b, x O], =min{ [ EL H,(b,, x t-2)], & (2] ,dr +

f

+9" ()| E[H 4 (b, x,t 7)1, EL (2] ,d3,
and

Efu,(b,, x,t)], = max{j' E[H,,(b,, xt-1)], H f (7] ,dr+

to

+g" ([ EIHA (b, x t=D)], EL f,(D)] ,d3.

(27)

(28)

(29)

(30)

(31)

(32)
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Using a-level optimization procedure [24] for arbitrary=a, 0[0,1] or the max-min in the
extension principle [11], the smallest and the largest expected valuessahllished poink
and timet can be found.
The lower and upper endpoints of the covariance could be defined using (28) as

Cov,, [%, %ty =

4t
= min{” E[H, (bg %t =7)H, (b, X, t,—7,) ] Covy [7,7 )] drdr ,+ (33)

foto
4t

+”CovHHa [%. %t =1t -7 E[f, (71)1, E[ f, (TZ)L dr dr },

(R0
and

COVuug [X'l' X2’tl’t2]ar =

4t
= max{” E[H, (by, %t =7)H, (b, X, t,=7,) | Cov [7,7 ] drdr + (34)
1t
tt,

+f feouu, [xoxti-rutemr], EL1 ()], EL 1 (7], dr g

to to
In the particular case if the load of the beam fe/hite-noise” stationary stochastic process
thenC, (7,-7,), = o;,0(r,—1,) and the variance is given by the formula

t
a’ (xt), =07, [E[H2(b,, xt=7)],dr +
L (35)
+E[ fj]a“CovHHa(x, xt-r,t-r,),drdr,

oo

Accordingly, we have obtained the formulas for #eEond-order probabilistic moments of
the response of the structure.
We look for solutions of the system of Eqgs. (24)ha form

Hoo (b, x,1) =Y v (b, 1)SINA,X, (36)
n=1
and
H\g(ba,x,t):ZZrﬁ,(ba,t)cosdnx (37)
n=1

whereA, =m(n-1/2)/h, n=12,3,
In the particular case oA =1one obtains from Eqs. (24):
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Voa (04,) + 28, 0, )s 0, 1)+ 6 0, ) B, 1)+
<K(b,,X)g(x)> _ 2
An < m(ba,X) > Zia (ba’t) - H/‘n 5(t)! (38)
2y (b 1)+ 28, 0,)2, 0, 1)+, ©, )z, b, 1)+
<K(bg X)g5 (x) >

b,,t)=0.
" <m(b,,x)(g'(x))* > o B0
_ <c(b,,Xx)> 2<K(bg,,X)> _ ;2
WhereZﬁa(ba)—W, o, 0,)=A; W—Afvw(ba),

_ <c(b,, x)(g'(x)* > _ <K(b,, X)(g5 (X)) >
2 b)= a , . 0,)= —.
A ©) <m(b,,x)(g"(x))* > o o) <m(b,,x)(g"(x))" >

The initial conditions have the form

yna(ba’o): O’ yna Cna ’O): O’ Zia ba ’O): O’ th;a ma 10;: ‘ (39)

Let us consider the steady-state vibratf —) of the beam under stationary, stochastic
excitation. In this case the solutions (26-30) have the following form: for the expelited va

Efu, (b, x,)], = Ew,(b,, X )], + g () Hv(b,, X )], =

=E[ fa]a]gE[Ha(ba, x1)],dr= (40)

= €11, ][ Bl H,of(b, x ), 47 + "3 B 1] [ B H b, % 2] ,dz

for the covariance:

Cov,, [xl,x ,OO,OO]G =

o'—;S

T o (bgr %, 1) H a(ba,xz,rz)]aCovﬁa[rl—rz]adrpr2+ (41)
0

+E2[ fa]a_[jCOVHHa [Xv Xor Ty Tz]a drzdrz’
00

and for the variance:

O'Sa (X,0), = COVuua [X,X,OO,OO]H =
]2]2 « (ba, X1 H, (ba,x,rz)]a Cov,, [Tl_Tz]a drdr,+ (42)
00
+E2[ 1tOI]OIIJCOVHH” [X, X Ty, T2]a dr,dr.,.
00

The lower and upper endpoints of the expected vahaevariance can be found based on the
relationships (40) and (42)
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Elu,(b,, X,)],, =min{H f] HJ-EE H(b, x7],d% =

o - (43)
=min{E] £,] [E H,(b, x 21,7+ 9 Y B f] [EHI b, x 9 ,dF,
E[u, (b, X,%)],, =max{E[ fa]a]zE[ H, (b, x 1],dg =
. ’ . (44)
= max{E[ f,1[ Bl H,o(b, % D], d7+g (Y E ] [B HA b, x 2] ,d,
and
07 (X,0), = min{]g]g E[H, (b, x1,)H, (b,,x1,)]| Covy [r,-7,] drdr,+
N 00 (45)
+E7 fa]aHCovHHa [x % 1,,7,] dr.dr},
0. (X,0),, = max{ﬁ E[H, (b,.x.7,)H, (b, x,1,) ] Cov, [7,-7,] drdr,+
00 (46)

+E7 fa]a'[jCOVHHD [x % 7,,7,] dr.dr}.
00
In the case of the “white noise” excitation the variance has the form
. (x,@), =07, [ E[H (b, x,11,dT +ET ], [ [Coviy (% X 7,,7,) ,dr.dT,  (47)
0 00

The randomness of the structural parameters is included in the ratyshamic influence
function H_(b,,x,t)=H_ (b,,xt)+g* X)H: @, ,xt) which depends on the uncertain
parameter vectdr. Here, another difficulty arises in the determination of the dege@lues
and the second moment (covariance) of the RDIF which are in Eqgs. 2an®%0-47). This

problem can be solved using the perturbation method [8,9] or the Monte Carlo Method.
If the excitation process is of the type of non-stationary kitienexcitation following

relationships should be introduced in the above general solstmy(x)>=<m,(x) >,
f,(t)=-2,(t) =e,(t)X,(t), wheree,(t) is a fuzzy deterministic envelope an,(t) is a
fuzzy stationary stochastic process.

3 MODEL OF THE BUILDING

Each storey of the building consists of two parts with differefihesses and masses. For
this reason as a model of the buiding we can consider a beam compaggetiofiic array of
two linearly elastic, homogeneous and isotropic constituents witecpenterfaces. Let us

assume that the Kirchhoff moduB(x) are fuzzy random variables and are equdd 1 G,,

on (0,a) andhb,, =G,, on (al). The fuzzy random variablgs,, andG,, are assumed to
be mutually independent. The other variables are deterministicraratjaal to, respectively,

10
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F1, k&1, o1 on (0a) andF,, k2, o> on @,l) wherep, and p, are denote mass density. One
introduces only oneN=1) shape functiog'(x), which is piecewise linear, Fig.1.

+1

A

l-a
Fo, G2, &

Fi, G, o

+1

Figure 1:

q(x)f(t)

p(x,t)

Figure 2:

In this case we have

11
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<K(9 >, =GukiFr 316G,k F(1- )

<K(Xg.(x) >, = Gmlell——GmKZFz(l—li),

<K(9GLNG: 00) >, =Z[GukF, 2 -G,k F -]

<m(x) >= Fl,ol + szz(l——) (48)

<m(x)g'(x)g'(x) >= —[F1,01|—

< C(X) >= Zﬁ[Flpl | + szz(l _)]

<09 (g >=§[F1p1|—

- szz(l—lﬂ)],

4 szz(l—lﬁ)].
For the particular casa=1/2 it is
<K(X)>, =%(GMK1F1+ G, K F),
<K(X)gL(3) >, =%(GMK1F1—GZHK2F2),
<K(9GLNG:(0) >, =3 (GuF,~ Gy ).
<M >=— (R0, +Fp), (49)

MGG (9 > =2 (F + Fop).

<c(x) > = B(Fp,+ Fop)),
A

<c(X)g' (X g(x) > = 3 (RA*FL,)

Using the perturbation method [8, 9] we obtain the following set of differential equations:
- Zeroth order equations

_(G,KF +G /(F2)|_|0 4G,k F,~G KF)HlO

wa, ><><(X!t) VHX(X’t)+
Fo +F0, Fo +F,0,
2<q(x)>
+2,8H (xt)+Hwa(xt)——5(t),
Fo +F,0, (50)
12(G20K2F2_GJHK1F1)HO ( ) 48@17/(!: +GhK E 2)H10(X t)+
I*(Fo+Fp) ™7 12(F0,+ F,0,)

+2ﬁH O(x,t)+ H 2 (x,t)=0.
- First order equations (for i=1,2.)

12
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_(G,k.F,+G wKF ) (x t)_4(C_527Kf2—C_5&KE)
FotRp, Fo+Fyp,
1

wia (X’t)+ I_.i\lvia (X’t):— I:'2J.ia (X’t)’
Flpl+ FZpZ

12G,,K5F, =Gk Fy) 1 (x )+ 48G« F +G Kfz)Hll
F(Ro+Fp) I*(Rp +F,0,)

+2'8H\}ila (X,t)+ H;'a (X,t):— . (X,t),
Fo +F,0, &

HY  (x,t)+

via,X

+23H!
(51)

(x,t)+

where
R (X 1) = Hopg o (X,1) = 4H 2 (x,t),
&Mxoﬂ—H&Am)—4+aw

Rizo (X t) = Hipy (X, t)+4H1° (x.t),

va X

(52)

%mu0-~—H°(x0 H”an

wa X

In particular case if5, =G,, =G, than the equations 47-50 have the forms
<K(x) >, =G,[«,F, I ik (1= )]
<KX g5 (X) >, =G,[xF, T —KZFm(l—le)], (47a)
<K(GLMTLN) >, =3B,y =k Fo L)

for the particular casa=1/2

<K >, =2 (GF, +KF,)

<KOGL(X >, =58, (G, ~KFy), (48a)
1

< K(X)glx(x)glx(x)) >a :gGa(KlF]a _KZFZJ)'

- Zeroth order equations

13
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_G,(kFy, +K5F)
Fo.o+Fy0,
+2BHC (x,t)+HS (x.t)=

460, (KFzu—KFy)
FoP1tFap,
240> 50y
FootFypp, (49a)
12c_;a (K,Fsq _KlF]a)HO (x,t)+ 4&_':‘01 KFy tKkF, )H
P(FuptFup) " I*(Fy o1t Fou0)
+2BHY (x,t)+ H2(x,t)= 0.

H (1) =

HX (x,t)+

va,x

(X, t)+

- First order equations (for i=1,2.)
G, (kF, +K Fu) |y & t)_4(_30,(/(2|:2,—/(1|: )

FootFypp, FpoitFaup,
1
+2BH.,, (x,t)+H., (X, t)-—F\’m x.t),
Foo+Faypp,
12Ga (K2F2a _KlF:Ia)H I (X t)+ 4&':‘01 Q(an +KJ:2;/ )
1?(Fyo+Fpp) 12(Fy 0.t F o0,

+2BHY (x,1)+H (x, t)—;Rﬂ, (x.t),

Fo.0*+Fyup,

Let us consider the shear vibration of a homogeneous beam. The ranbiemcmffunction
has the form

HY  (x,t)+

va, X

(50a)
Ho (X, 1)+

H,(x t)——Z—e sinQ_t sind X, (53)
where2s =S, @y =22 _ g2 = y - g% 4 =Fn-2), wr =12 K 2 a2
m m h 2 m

h
:J.q(x)sin/lnxdx.
0

We assume that the Kirchhoff modulGg is a fuzzy random variable. The other beam
parameters are assumed to be deterministic. The random functienbidgsthe load were
assumed to be fuzzy weakly stationary stochastic procdgses¢t)], =H f,], =const,

Cy, (t,1,) =Cq (t,—t,)=Cy (t). Let us assume that the time and space correlation of the load
process is of the “white noise” type, namely that the covarianoetibns has the form

Cy = Jfad(t). The solution will be found for the steady-state, i,&.-«. The expected value

is equal to

2E[f]

€10, (0, %y = EL L, E[Ho(xt=D)]dr == bl 3,3 Bein 4x. (54

nln

In order to find the probabilistic characteristics the functiothefrandom variables has been
expanded into Taylor series around the mean value and restrictdueto first items
(components) of the expansion. The expected value of the response has form

14
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2E[f ], (1+V:

Elu, (0,, X ®)], = F EG,]

)z G, sinA X, (55)

a n—l n
whereV, is standard deviation of the Kirchhoff modulus.

The variance of the beam displacement for the steady-stasions (t- ) can be shown in
the form

al (), =07, [E[nX(b,, x,7],dr +ET 1], [ [Cov, (X % 7,,7,),drdr,  (56)
0 00
After calculating the integrals in the equation (56) one obtains

Jf (L+vg )
sm A X+
thm,BE[G ]anz_;‘

(o] o0 1
0.0 El
? n=1 k=1 “ (2ﬂ2+a'¥120+a'{<31)2_49n%19k31

nzk

a,, (%), =

(57)

]1,SIN A, XSinA, X.

4 NUMERICAL EXAMPLE

For the testing the approach presented the shapidos of the expected value and
standard deviation of the displacements on a tomufistorey tall building with averaged
structure parameters have been calculated. Thelaaéns have been done assuming that the
expected value of the shear stiffness is a fuzaybmr of triangular shape functions. Other
guantities are being treated as deterministic patars. The results obtained for the
coefficient of variation of the shear stiffness @lgio 0.1 are shown in the Figures 3 and 4.

! /TN
0.8 /’ \\

g U6 ,./ \\

0.4 / \
032 / \
0

umuﬁnmnﬁnmuwumuw

.E[i'.:!] f_h

Figure 3. The shape function of the expected vafube displacement
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! AN
03 /
, 06 /

0.4 /J \‘~
0.2 / \

0.166 0.16z 0.17 0172

FolF
o

o]
Figure 4. The shape function of the standard dieviadf the displacement

5 SUMMARY AND CONCLUSIONS

 The model of a vibrating shear beam has been generalized on tlee piariodic
composite beam with uncertain parameters. Different types oftamtg of the structure
parameters and the excitation process have been considered, : nlarmfynumbers,
random variables, random functions, fuzzy random variables, fuzzy rahdutions
and fuzzy stochastic processes. This allows for investigatingle analysis of complex
problems of the shear vibrations of periodic composite beams with fiammjom
parameters under fuzzy stochastic excitations. Much attention basfdmised on for
obtaining the solution in the most general case. Presented modhd bhite periodic
composite beam with uncertain parameters has been proposedaaelaof multistory
building. It has been assumed, that each storey has two difféfer@sses: one for the
part without windows and doors and another one with windows and doors.

* For obtaining the solution within the correlation theory the fuzzy randgmamic
influence function has been introduced, which allows for applying thtirpation
method or Monte Carlo simulation.

* The difficulty connected with solving the differential equationshwperiodic variable
coefficients has been overcame by applying the average taemgmoach, which
transforms the differential equations with periodic variable caefits into the averaged
differential equations with constant coefficients.

* For the steady-state vibration of the beam with fuzzy random p#eesrunder stationary
stochastic excitation the expressions for calculating the eegheciue and variance of
the beam displacements are given.
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