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Abstract. In the paper the problem of the shear vibration of a finite periodic composite beam 
with uncertain parameters as the model of a high building under a stochastic excitation is 
considered. The solution of the problem was found using the random dynamic influence 
function which allows applying the perturbation method while the average tolerance 
approach allows passing from differential equations with periodic variable coefficients to 
differential equations with constant coefficients. Different types of uncertainty of the structure 
parameters and the excitation process have been considered, namely: fuzzy numbers, random 
variables, random functions, fuzzy random variables, fuzzy random functions and fuzzy 
stochastic processes. This allows a wide analysis of complex problems of the shear vibrations 
of periodic composite beams with fuzzy random parameters under fuzzy stochastic excitations. 
Much attention has been focused on for obtaining the solution in the most genera case.  



K. Mazur-Sniady, R. Sieniawska, P.Sniady and S. Zukowski 

 2

1 INTRODUCTION 

The dynamics response of the sheared beams or sheared plates as models of multistorey 
buildings was subjects of research by some authors [1-4]. In all the cases the homogeneous 
models have been assumed which do not exactly describe the real structure. Each storey of the 
building consists of two parts with different stiffnesses and masses. For this reason as a model 
of the building we can consider a sheared periodic beam. In most cases it is assumed that the 
parameters of the structure are deterministic. On the other hand, the structural parameters like 
geometry characteristics, material and damping properties might be uncertain to some extent. 
Their uncertainty may have a strong influence on the reliability of the structure in the dynamic 
context and be the crucial factor which determines the safety of the structure.  Dynamic 
analysis of structures often involves two kinds of uncertainty. One of them is the randomness 
and the other one is the fuzziness which describe imprecision. The random variability is 
described by use of probability theory and the imprecision by use of fuzzy sets. Very often 
sufficient statistical data are not available in this case a fuzzy function (fuzzy process) or 
fuzzy random variable (fuzzy stochastic process) is possible to employ for modeling purposes. 
The concept of fuzzy random variables allows to combine both randomness and imprecision. 

In the paper the problem of the shear vibration of a finite periodic composite beam as the 
model of high building with uncertain parameters (fuzzy random variables) under a fuzzy 
stochastic excitation is considered. The solution of the problem was found based on the fuzzy 
random dynamic influence function while the average tolerance approach allows passing from 
differential equations with periodic variable coefficients into differential equations with 
constant coefficients. The tolerance averaging method proposed by Woźniak [5-7] has several 
advantages and may be used as an alternative to the well-known homogenization method. The 
idea of random dynamic influence function has been presented in [8-10]. The fuzzy set theory 
was initiated by Zadeh [11]. The concept of fuzzy random variables was introduced by 
Kwarkernaak [12], Puri and Ralescu [13] and combines both randomness and imprecision. 
The dynamic response of the system with deterministic parameters under fuzzy stochastic 
excitation has been considered among other in the papers [14-20]. The definition of the 
variance of fuzzy random variables can be found in the papers [21-23]. The application of the 
uncertain forecasting in engineering and computational mechanics based on fuzzy stochastic 
processes is presented in the monographs [24,25]. 

2 GENERAL SOLUTION 

Let us consider stochastic vibrations of a periodic straight cantilever beam of length h with 
a varying cross-section as a model of the building. The differential equation of motion of the 
sheared beam has the form 

 , ,[ ( , ) ( , , )] ( , ) ( , , ) ( , ) ( , , ) ( , ),x xK x u x t c x u x t m x u x t p x tα α α α α α α α α α− + + =b b b b b b& &&  (1) 

where ( , , )u x tα αb  denotes the vertical displacement of the beam, ( , ) ( ) ( ),K x FG xα ακ=b  

( , ),m xαb  ( , )c xαb  are, respectively, the shear rigidity of the beam, mass of the beam per unit 

length and the damping coefficient, all of which are random functions of the spatial 
coordinate [ ],  0, .x x h∈  Furthermore, G is the shear modulus of elasticity, κ  is the shear 

stiffness factor that depends on the cross-sectional shape and F is the cross-sectional area. 
The function ( , )p x tα  represents the excitation process of the beam in space and time. The 

symbol x,)(⋅  and the superimposed dot denote differentiation in space and time, respectively. 

The fuzzy random parameters of the beam are presented as a vector1 2[ , ,... ]Trb b bα α α α=b , 
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where the superscript T  denotes the transposition operation. It is assumed that the expected 
value [ ]E αb  and the covariance matrix [cov( , )] [ ] [ ] [ ]

i j rxr

T Tb b E E E
α α α α α α α α= = −

b b
C b b b b  are 

known. The symbol [ ]E ⋅  is the expectation operation. Possible random beam parameters 

include: the Kirchhoff modulus, the damping coefficient and the dimensions of the beam 
cross-section. It is assumed that the excitation process of the structure is a fuzzy stochastic 
process. Additionally, we assume that the structural and load parameters are mutually 
independent. The solution will be found within the correlation theory; therefore exact 
knowledge of the probability distributions of these random variables is not required. 

In particular cases we can consider different types of the uncertainties of the structure and 
load parameters. They are fuzzy numbers, random variables (random functions) or in most 
general cases fuzzy random variables (fuzzy random function - fuzzy stochastic processes). 

The boundary conditions of the cantilever beam have the form 

 ,( ,0, ) 0,     ( , , ) 0.xu t u h tα α α α= =b b  (2) 

In the particular case when( , ) ( ) ( ) ,K x K GF constα α ακ= = =b b  ( , ) ( )c x c constα α= =b b  and 

( , ) ( ) ,m x m constα α= =b b  Eq. (1) has the form 

 ,( ) ( , , ) ( ) ( , , ) ( ) ( , , ) ( ) ( ).xxK u x t c u x t m u x t p x f tα α α α α α α α α α α+ + =b b b b b b& &&  (3) 

The standard methods of analyzing the rod dynamics are effective only if the coefficients in 
Eq. (1) are constant. The quantities ( , ),K xαb ( , )c xαb and ( , )m xαb  in this study are modeled 
as periodic fields and are rapidly varying l-periodic functions  

 ( , ) ( , ), ( , ) ( , ), ( , ) ( , ).K x K x l c x c x l m x m x lα α α α α α= + = + = +b b b b b b  (4) 

The length l is the height of a single storey of the building and is small as compared with the 
height h  of the building ( ).l h<<  
It is difficult to find the solution of  Eq. (1) because the coefficients are strongly periodic. We 
solve Eq. (1) basing on the concepts of the tolerance-averaged model [5-7]. Using this 
procedure it is possible to transform Eq. (1) to the form of a system of averaged differential 
equations with constant coefficients. This approximation describes the effect of the structural 
length parameter of the beam. We define ( )0,  hΩ = , ( ) ( / 2, / 2)x x l x l∆ = − + , ,l h<< , 

0x ∈Ω , { }0 0 :x xΩ = ∈Ω ∆ ∈ Ω . The periodic functions will be averaged by means of the 

formula  

 
2

0

2

1
( , ) ( , ) , ,

l
x

l
x

g x t g t d x
l

ξ ξ
+

−

< >= ∈Ω∫  (5) 

where ( , )g x t  is an arbitrary function defined on (0, )hΩ = . 
We base on Conformability Assumption [5-7] that the function ( , )u x t  conforms to the l-
periodic structure of the beam and together with all its derivatives it is periodic-like. Let us 
introduce the following decomposition of this function: 

 ( , , ) ( , , ) ( , , ),u x t w x t v x tα α α α α α= +b b b  (6) 



K. Mazur-Sniady, R. Sieniawska, P.Sniady and S. Zukowski 

 4

where ( , , )w x tαb  is the averaged part of the function ( , , )u x tαb  and ( , , )v x tαb  will be 

referred to as the fluctuating part of the function ( , , ).u x tαb  

The modeling decomposition from Eq. (6) makes it possible to introduce two kinds of basic 
unknowns, namely function ( , , )w x tαb which is a slowly varying function and ( , , )v x tαb  is an 

oscillating l-periodic-like function. Using Galerkin approximation we obtain the fluctuating 
function in the form 

 ( , , ) ( ) ( , , ),A Av x t g x v x tα α α α=b b  (7) 

(the summation convention over A=1,2,... holds), where )(xg A  are a priori known oscillating 

l-periodic-like functions and the new unknown amplitudes ( , , )Av x tα αb are sufficiently regular 

and slowly varying functions.  
The functions )(xg A should satisfy conditions 

 
2

2

1
( ) ( ) 0

l
x

A A

l
x

g x g x dx
l

+

−

< >= =∫  (8) 

and 

 
2

2

1
( , ) ( ) ( , ) ( ) 0

l
x

A A

l
x

m x g x m x g x dx
lα α

+

−

< >= =∫b b  (9) 

Using the decomposition of Eqs. (6) and (7) and taking into account the Tolerance 
Averaging Approximation [5-7] after some manipulations we obtain the following system of 
N 1 +  equations with constant coefficients for unknown functions ( , , )w x tαb  and 

( , , ),Av x tαb  for 0Ω∈x  

 

, , ,

, , , ,

( , ) ( , , ) ( , ) ( ) ( , , )

( , ) ( , , ) ( , ) ( , , ) ( , ) ,

( , ) ( ) ( , , ) ( , ) ( ) ( ) ( , , )

( , ) ( ) ( ) ( , ,

A A
xx x x

B B A A
x x x x

B A A

K x w x t K x g x v x t

c x w x t m x w x t p x t

K x g x w x t K x g x g x v x t

c x g x g x v x

α α α α α α

α α α α α α α

α α α α α α

α α α

− < > − < >
+ < > + < > =< >

< > + < >

+ < >

b b b b

b b b b

b b b b

b b

& &&

& )

( , ) ( ) ( ) ( , , ) ( , ) ( ) ,B A A A

t

m x g x g x v x t p x t g xα α α α

+

< > =< >b b&&

 (10) 

where ,  1,2, , .A B N= …  
It has been assumed that the damping coefficient fulfills ( , ) 2 ( , ),c x m xα αβ=b b  where 

β=const and hence ( , ) ( ) 0.Ac x g xα< >=b  The derivation of the beam equations (10) is 

analogous to the derivation of the rod equations [8]. 

2.1 Eigenvalue problem 

Let us consider a deterministic eigenvalue problem. It this case we assume 
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2

2

1
( , ) ( ) ( , ) ( ) 0

l
x

A A

l
x

m x g x m x g x dx
lα α

+

−

< >= =∫b b  (11) 

and 

 ( , ) 0, ( ) 0p x t c xα = =  (12) 

After introducing (11) to equations (10) and taking into account (12) we obtain for 1A B= =  

 

1 1 2
, , ,

1 1 2 1
, , ,

2 1 2 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( )[ ( )] ( )

( )[ ( )] ( ) 0.

xx x x

x x x

K x W x K x g x V x m x W x

K x g x W x K x g x V x

m x g x V x

ω

ω

< > + < > + < > =

< > + < > +

− < > =

 (13) 

From the second of Eqs. (13) one obtains 

 
1
,1

,2 1 1 1 1
, ,

( ) ( )
( ) ( ).

( ) ( ) ( ) ( ) ( ) ( )
x

x
x x

K x g x
V x W x

m x g x g x K x g x g xω
< >

=
< > − < >

 (14) 

Introducing relationship (14) to the first of Eqs. (13) one obtains the differential equation in 
the following form 

 

1 2
,

,2 1 1 1 1
, ,

2

[ ( ) ( ) ]
[ ( ) ] ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 0,

x
xx

x x

K x g x
K x W x

m x g x g x K x g x g x

m x W x

ω

ω

< >
< > +

< > − < >

+ < > =

 (15) 

which can be written shortly as 

 2
, ( ) ( ) 0,xxW x W xλ+ =  (16) 

where 

 
4 1 2 2 1 2

,2
2 2 1 2 1 2

, ,

( ) ( )( ( )) ( ) ( )( ( ))

( ) ( )( ( )) ( ) ( )( ( )) ( ( ) ( ) )
x

x x

m x m x g x m x K x g x

K x m x g x K x K x g x K x g x

ω ω
λ

ω
< >< > − < >< >

=
< >< > − < >< > + < >

 (17) 

The solution of the equation (16) has the form 
 

 ( ) sin cosW x A x B xλ λ= +  (18) 

Boundary conditions for cantilever beam have the form 

 ,(0) 0, ( ) 0xW W h= =  (19) 

Therefore the eigenfunctions and eigenvalues are given by 

 
1

( ) sin , ( ), 1,2,3,
2n n nW x x n n

h

πλ λ= = − =  (20) 

From the relationship (14) one obtains  

 
1
,1

2 1 1 1 1
, ,

( ) ( )
( ) cos ,

( ) ( ) ( ) ( ) ( ) ( )
x n

n n
n x x

K x g x
V x x

m x g x g x K x g x g x

λ
λ

ω
< >

=
< > − < >

 (21) 
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and the eigenfrequencies 

 

1 2
,2 2

1/2 1 2

1 2 1 2
, ,2 2 2
1 2 1 2

( )( ( ))1 ( )
{

2 ( )( ( )) ( )

( )( ( )) ( ( ) ( ) )( )
[ ] 4 }.

( )( ( )) ( ) ( ) ( )( ( ))

x
n n

x x
n n

K x g x K x

m x g x m x

K x g x K x g xK x

m x g x m x m x m x g x

ω λ

λ λ

< > < >= + ±
< > < >

< > < >< >± − +
< > < > < >< >

 (22) 

In the case of a uniform beam (( ) .,K x K const= =  ( ) .m x m const= = ) the eigenfrequencies 
have the form 

 .n n n s

K
v

m
ω λ λ= =  (23) 

The quantity /sv K m=  represents the shear wave velocity in the beam. 

2.2 Forced vibration of the beam 

The aim of this chapter is to find the general solution for probabilistic characteristics of the 
system response for arbitrary excitation stochastic process ( , ) ( ) ( ),p x t q x f tα α α=  where 

( )q xα  is a fuzzy deterministic function. The problem is being solved within the correlation 

theory. When the parameters of Eqs. (10) are random the problem can be solved only if the 
right sides of the equations (10) are deterministic. To overcome these difficulties we introduce 
the random dynamic influence function ( , , ) ( , , ) ( ) ( , , )A A

w vH x t H x t g x H x tα α α α α α= +b b b  
(RDIF) [8,9] which satisfies the following equations 

 

, , ,

, , , ,

,

( , ) ( , , ) ( , ) ( ) ( , , )

( , ) ( , , ) ( , ) ( , , ) ( ) ( ),

( , ) ( ) ( , , ) ( , ) ( ) ( ) ( , , )

( , ) ( ) ( )

A A
w xx x v x

w w

B B A A
x w x x x v

B A

K x H x t K x g x H x t

c x H x t m x H x t q x t

K x g x H x t K x g x g x H x t

c x g x g x

α α α α α α

α α α α α α α

α α α α α

α

δ

− < > − < > +

+ < > + < > =< >

< > + < > +

+ < >

b b b b

b b b b

b b b b

b

& &&

( , , ) ( , ) ( ) ( ) ( , , ) 0,A B A A
v vH x t m x g x g x H x tα α α α α+ < > =b b b& &&

 (24) 

with initial conditions 

 ( , ,0) 0, ( , ,0) 0, ( , ,0) 0, ( , ,0) 0.A A
w w v vH x H x H x H xα α α α α α α α= = = =b b b b& &  (25) 

If the random dynamic influence function ( , , ) ( , , ) ( ) ( , , )A A
w vH x t H x t g x H x t= +b b b  is known 

then the response of the beam to be found can be presented in the following form: 

 0

0 0

( , , ) ( , , ) ( ) ( , , ) ( , , ) ( )

( , , ) ( ) ( ) ( , , ) ( ) .

t
A A

t

t t
A A

w v

t t

u x t w x t g x v x t H x t f d

H x t f d g x H x t f d

α α α α α α α α α

α α α α α α

τ τ τ

τ τ τ τ τ τ

= + = − =

= − + −

∫

∫ ∫

b b b b

b b

 (26) 

where if 0 0 t =  then one considers transition vibrations and for 0  t = − ∞  one considers the 

steady-state vibration case.  
On the basis of the relationship (26) we can obtain the expected value of the beam response 
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0

0 0

[ ( , , )] [ ( , , )] ( ) [ ( , , )]

[ ( , , )] [ ( )]

[ ( , , )] [ ( )] ( ) [ ( , , )] [ ( )] ,

A A

t

t

t t
A A

w v

t t

E u x t E w x t g x E v x t

E H x t E f d

E H x t E f d g x E H x t E f d

α α α α α α α α α

α α α α α

α α α α α α α α α α

τ τ τ

τ τ τ τ τ τ

= + =

= − =

= − + −

∫

∫ ∫

b b b

b

b b

 (27) 

and the covariance of the displacement 

 

[ ]

( ) ( ) [ ]

[ ] ( ) ( )

1 2

0 0

1 2

0 0

1 2 1 2

1 1 1 2 2 2 1 2 1 2

1 2 1 1 2 2 1 2 2 2

, , ,

, , , , ,

, , , ,

uu

t t

ff

t t

t t

HH

t t

Cov x x t t

E H x t H x t Cov d d

Cov x x t t E f E f d d

α

α

α

α

α α α α αα

α αα α α

τ τ τ τ τ τ

τ τ τ τ τ τ

=

= − − +  

+ − −       

∫ ∫

∫ ∫

b b  (28) 

where the covariance of RDIF can be estimated from 

 
[ ] ( ) ( )
( ) ( )

1 2 1 2 1 1 2 2

1 1 2 2

, , , , , , ,

, , , ,

HHCov x x t t E H x t H x t

E H x t E H x t

α α α α αα α

α α α αα α

= +  

−       

b b

b b
 (29) 

and [ ]1 2,ffCov
α ατ τ  denotes the time covariance of the excitation force. 

The variance of the beam displacement is equal to 

 

[ ]

( ) ( ) [ ]

[ ] ( ) ( )

0 0

0 0

2

1 2 1 2 1 2

1 2 1 2 2 2

( , ) , , ,

, , , , ,

, , , .

u uu

t t

ff

t t

t t

HH

t t

x t Cov x x t t

E H x t H x t Cov d d

Cov x x t t E f E f d d

α α

α

α

α

α α α α α

α αα α α

τ τ τ τ τ τ

τ τ τ τ τ τ

σ = =

= − − +  

+ − −       

∫ ∫

∫ ∫

b b  (30) 

Due to the relationship (27) one obtains 

 0

0

[ ( , , )] min{ [ ( , , )] [ ( )]

( ) [ ( , , )] [ ( )] },

t

l w

t

t
A A

v

t

E u x t E H x t E f d

g x E H x t E f d

α α α α α α α α

α α α α α

τ τ τ

τ τ τ

= − +

+ −

∫

∫

b b

b

 (31) 

and 

 0

0

[ ( , , )] max{ [ ( , , )] [ ( )]

( ) [ ( , , )] [ ( )] }.

t

r w

t

t
A A

v

t

E u x t E H x t E f d

g x E H x t E f d

α α α α α α α α

α α α α α

τ τ τ

τ τ τ

= − +

+ −

∫

∫

b b

b

 (32) 
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Using α-level optimization procedure [24] for arbitrary [0,1]
k

α α= ∈  or the max-min in the 

extension principle [11], the smallest and the largest expected values at an established point x  
and time t  can be found. 
The lower and upper endpoints of the covariance could be defined using (28) as 

 

[ ]

( ) ( ) [ ]

[ ] ( ) ( )

1 2

0 0

1 2

0 0

1 2 1 2

1 1 1 2 2 2 1 2 1 2

1 2 1 1 2 2 1 2 2 2

, , ,

min{ , , , , ,

, , , },

uu l

t t

ff

t t

t t

HH

t t

Cov x x t t

E H x t H x t Cov d d

Cov x x t t E f E f d d

α

α

α

α

α α α α αα

α αα α α

τ τ τ τ τ τ

τ τ τ τ τ τ

=

= − − +  

+ − −       

∫ ∫

∫ ∫

b b  (33) 

and 

 

[ ]

( ) ( ) [ ]

[ ] ( ) ( )

1 2

0 0

1 2

0 0

1 2 1 2

1 1 1 2 2 2 1 2 1 2

1 2 1 1 2 2 1 2 2 2

, , ,

max{ , , , , ,

, , , }.

uu r

t t

ff

t t

t t

HH

t t

Cov x x t t

E H x t H x t Cov d d

Cov x x t t E f E f d d

α

α

α

α

α α α α αα

α αα α α

τ τ τ τ τ τ

τ τ τ τ τ τ

=

= − − +  

+ − −       

∫ ∫

∫ ∫

b b  (34) 

In the particular case if the load of the beam is a “white-noise” stationary stochastic process 
then 2

1 2 1 2( ) ( )ff fC
α α ατ τ σ δ τ τ− = −  and the variance is given by the formula 

 0

0 0

2 2 2

2
1 2 1 2

( , ) [ ( , , )]

[ ] ( , , , ) .

t

u f

t

t t

HH

t t

x t E H x t d

E f Cov x x t t d d

α

α

α α α α α

α α α

τ τ

τ τ τ τ

σ = σ − +

+ − −

∫

∫ ∫

b

 (35) 

Accordingly, we have obtained the formulas for the second-order probabilistic moments of 
the response of the structure.  
We look for solutions of the system of Eqs. (24) in the form 

 
1

( , , ) ( , )sin ,w n n
n

H x t y t xα α α α λ
∞

=
=∑b b  (36) 

and 

 
1

( , , ) ( , )cosA A
v n n

n

H x t z t xα α α α λ
∞

=
=∑b b  (37) 

where ( 1/ 2) / , 1,2,3,.n n h nλ π= − =  

In the particular case of 1A = one obtains from Eqs. (24): 
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1
, 1

1 1 2 1
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1 2

( , ) 2 ( ) ( , ) ( ) ( , )

( , ) ( ) 2
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( , )

( , ) 2 ( ) ( , ) ( ) ( , )

( , ) ( )
( , ) 0.

( , )( ( ))

n n n n

x
n n

n

n v n v n

x
n n

y t y t y t

K x g x
z t t

m x H

z t z t z t

K x g x
y t

m x g x

α α α α α α α α α α

α
α α
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b
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b
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 (38) 

where 2 2 2 2( , ) ( , )
2 ( ) , ( ) ( ),

( , ) ( , )n n n s

c x K x
v

m x m x
α α

α α α α α α
α α

β ω λ λ< > < >= = =
< > < >

b b
b b b

b b
  

1 21 2
,2

1 2 1 2

( , )( ( ))( , )( ( ))
2 ( ) , ( ) .

( , )( ( )) ( , )( ( ))
x

v v

K x g xc x g x

m x g x m x g x
αα

α α α
α α

β ω
< >< >= =

< > < >
bb

b b
b b

 

The initial conditions have the form 

 1 1( ,0) 0, ( ,0) 0, ( ,0) 0, ( ,0) 0n n n ny y z zα α α α α α α α= = = =b b b b& &  (39) 

Let us consider the steady-state vibration 0( )t = −∞  of the beam under stationary, stochastic 

excitation. In this case the solutions (26-30) have the following form: for the expected value 

 
0

0 0

[ ( , , )] [ ( , , )] ( ) [ ( , , )]

[ ] [ ( , , )]

[ ] [ ( , , )] ( ) [ ] [ ( , , )] ,

A A
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w v

E u x E w x g x E v x

E f E H x d

E f E H x d g x E f E H x d

α α α α α α α α α

α α α α α

α α α α α α α α

τ τ

τ τ τ τ

∞

∞ ∞

∞ = ∞ + ∞ =

= =

= +

∫

∫ ∫

b b b

b

b b

 (40) 

for the covariance: 

 

[ ]

( ) ( ) [ ]

[ ]

1 2

1 1 2 2 1 2 1 2

0 0

2
1 2 1 2 2 2

0 0

, , ,

, , , ,

[ ] , , , ,
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ff
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E f Cov x x d d
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α

α

α

α α α α αα

α α α

τ τ τ τ τ τ

τ τ τ τ

∞ ∞

∞ ∞

∞ ∞ =

= − +  

+

∫ ∫

∫ ∫

b b  (41) 

and for the variance: 
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2

1 2 1 2 1 2

0 0

2
1 2 2 2
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( , ) , , ,
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α α α α αα
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+

∫ ∫

∫ ∫

b b  (42) 

The lower and upper endpoints of the expected value and variance can be found based on the 
relationships (40) and (42) 
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 0

0 0

[ ( , , )] min{ [ ] [ ( , , )] }

min{ [ ] [ ( , , )] ( ) [ ] [ ( , , )] },
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∞ = =
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∫
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b b
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 (43) 

 0

0 0
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r
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α α α α α α α α
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∞
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∫
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 (44) 

and 
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2
1 2 1 2 1 2
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2
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( , ) min{ , , , ,

[ ] , , , },

u l ff
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α α

α

α α α α α αα

α α α

τ τ τ τ τ τ

τ τ τ τ

∞ ∞

∞ ∞
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+

∫ ∫
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b b

 (45) 

 

( ) ( ) [ ]

[ ]

2
1 2 1 2 1 2

0 0

2
1 2 2 2

0 0

( , ) max{ , , , ,

[ ] , , , }.

u r ff

HH

x E H x H x Cov d d

E f Cov x x d d

α α

α

α α α α α αα

α α α

τ τ τ τ τ τ

τ τ τ τ

∞ ∞

∞ ∞

σ ∞ = − +  

+

∫ ∫

∫ ∫

b b

 (46) 

In the case of the “white noise” excitation the variance has the form 

 2 2 2 2
1 2 1 2

0 0 0

( , ) [ ( , , ] [ ] ( , , , ) .u f HHx E H x d E f Cov x x d d
α αα α α α α α α ασ σ τ τ τ τ τ τ

∞ ∞ ∞

∞ = +∫ ∫ ∫b  (47) 

The randomness of the structural parameters is included in the random dynamic influence 
function ( , , ) ( , , ) ( ) ( , , )A A

w vH x t H x t g x H x tα α α α α α= +b b b  which depends on the uncertain 

parameter vectorb . Here, another difficulty arises in the determination of the expected values 
and the second moment (covariance) of the RDIF which are in Eqs. (27-35) and (40-47). This 
problem can be solved using the perturbation method [8,9] or the Monte Carlo Method. 

If the excitation process is of the type of non-stationary kinematic excitation following 
relationships should be introduced in the above general solution ( ) ( ) ,q x m xα α< >=< >  

( ) ( ) ( ) ( ),f t z t e t X tα α α α= − =&&  where ( )e tα is a fuzzy deterministic envelope and ( )X tα  is a 

fuzzy stationary stochastic process. 

3 MODEL OF THE BUILDING 

Each storey of the building consists of two parts with different stiffnesses and masses. For 
this reason as a model of the buiding we can consider a beam composed of a periodic array of 
two linearly elastic, homogeneous and isotropic constituents with perfect interfaces. Let us 
assume that the Kirchhoff moduli ( )G x  are fuzzy random variables and are equal to 1 1b Gα α=  

on (0, )a  and 2 2b Gα α=  on ( , ).a l  The fuzzy random variables 1G α  and 2G α  are assumed to 

be mutually independent. The other variables are deterministic and are equal to, respectively, 



K. Mazur-Sniady, R. Sieniawska, P.Sniady and S. Zukowski 

 

 11

F1, κ1, ρ1 on (0,a) and F2, κ2, ρ2  on (a,l) where ρ1 and ρ2 are denote mass density. One 
introduces only one (N=1) shape function g1(x), which is piecewise linear, Fig.1.  

l

a
l-a

+1

+1

-1

F
1,

 G
1,

 ρ
1

F 2
, G

2,
 ρ

2

 

Figure 1:  

h

u(x,t)

h

u(x,t)+z(t)

z(t)

p(
x,

t)
=q

(x
)f

(t
)

 
Figure 2:  

In this case we have 
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3
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F
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+ −

< > = + −

 (48) 

For the particular case / 2a l=  it is 

 

1 1 1 2 2 2

1
, 1 1 1 2 2 2

1 1
, , 1 1 1 2 2 2

1 1 2 2

1 1
1 1 2 2

1 1 2 2

1 1
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 (49) 

Using the perturbation method [8, 9] we obtain the following set of differential equations: 
- Zeroth order equations 
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 (50) 

- First order equations (for i=1,2.) 
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where 
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In particular case if 1 2G G Gα α α= =  than the equations 47-50 have the forms 
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for the particular case / 2a l=   
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- Zeroth order equations 
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- First order equations (for i=1,2.) 
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Let us consider the shear vibration of a homogeneous beam. The random influence function 
has the form 
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2
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n
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where 2 ,
c
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β =  2 22 2 2( ) ( ) ,

n nn
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m
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1
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K
v

m
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h
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We assume that the Kirchhoff modulus Gα  is a fuzzy random variable. The other beam 

parameters are assumed to be deterministic. The random functions describing the load were 
assumed to be fuzzy weakly stationary stochastic processes,[ ( )] [ ] .,E f t E f constα α α α= =  

1 2 1 2( , ) ( ) ( ).ff ff ffC t t C t t C t
α α α

= − =  Let us assume that the time and space correlation of the load 

process is of the “white noise” type, namely that the covariance functions has the form  
2 ( ).ff fC t

α α
σ δ=

 
The solution will be found for the steady-state, i.e. .−∞=0t  The expected value 

is equal to 
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2 1
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∞
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In order to find the probabilistic characteristics the function of the random variables has been 
expanded into Taylor series around the mean value and restricted to three first items 
(components) of the expansion. The expected value of the response has form 
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where Gv
α

is standard deviation of the Kirchhoff modulus. 

The variance of the beam displacement for the steady-state vibrations (t→∞) can be shown in 
the form 

 2 2 2 2
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After calculating the integrals in the equation (56) one obtains 
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 (57) 

 

4 NUMERICAL EXAMPLE 

For the testing the approach presented the shape functions of the expected value and 
standard deviation of the displacements on a top of multistorey tall building with averaged 
structure parameters have been calculated. The calculations have been done assuming that the 
expected value of the shear stiffness is a fuzzy number of triangular shape functions. Other 
quantities are being treated as deterministic parameters. The results obtained for the 
coefficient of variation of the shear stiffness equal to 0.1 are shown in the Figures 3 and 4. 

 
Figure 3. The shape function of the expected value of the displacement 



K. Mazur-Sniady, R. Sieniawska, P.Sniady and S. Zukowski 

 16

 
Figure 4. The shape function of the standard deviation of the displacement 

5 SUMMARY AND CONCLUSIONS   

• The model of a vibrating shear beam has been generalized on the finite periodic 
composite beam with uncertain parameters. Different types of uncertainty of the structure 
parameters and the excitation process have been considered, namely: fuzzy numbers, 
random variables, random functions, fuzzy random variables, fuzzy random functions 
and fuzzy stochastic processes. This allows for investigating a wide analysis of complex 
problems of the shear vibrations of periodic composite beams with fuzzy random 
parameters under fuzzy stochastic excitations. Much attention has been focused on for 
obtaining the solution in the most general case. Presented model of the finite periodic 
composite beam with uncertain parameters has been proposed as a model of multistory 
building. It has been assumed, that each storey has two different stiffnesses: one for the 
part without windows and doors and another one with windows and doors.  

• For obtaining the solution within the correlation theory the fuzzy random dynamic 
influence function has been introduced, which allows for applying the perturbation 
method or Monte Carlo simulation. 

• The difficulty connected with solving the differential equations with periodic variable 
coefficients has been overcame by applying the average tolerance approach, which 
transforms the differential equations with periodic variable coefficients into the averaged 
differential equations with constant coefficients. 

• For the steady-state vibration of the beam with fuzzy random parameters under stationary 
stochastic excitation the expressions for calculating the expected value and variance of 
the beam displacements are given. 
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