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Abstract. The spatial discretization of elastic continuum by finite element method (FEM) in-
troduces dispersion errors to numerical solutions of wave propagation tasks. For higher order
Lagrangian as well as Hermitian elements there are optical modes in their frequency spec-
tra leading to spurious oscillations of shock induced responses in a vicinity of propagating
wavefronts. Furthermore, the behavior of classical higher order elements accounts for discon-
tinuities in their spectra as well as for false representation of maximum frequency, the error
of which increases with element order. For brevity this property is called the divergent behav-
ior in the text. The recent innovations in finite element analysis rely on spline-based shape
functions, taking inspiration in CAD (Computer Aided Design) approaches where the B-splines
and mainly NURBS (non-uniform rational B-spline) representations are regularly employed.
B-spline as well as NURBS curves are piecewise polynomial curves that are differentiable up
to a prescribed order. The B-splines functions, employed as finite element shape functions, are
examined in this paper, using the 1D stress wave modeling as a testing vehicle. It is shown
that the employed approach leads to substantial minimization of dispersion errors; furthermore
the errors decrease with increasing order of B-spline elements. It is believed that the B-spline
based FE technology represents a promising tool allowing to increase reliability of numerical
solutions of wave propagation problems.
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1 INTRODUCTION

The numerical solution of fast transient elastodynamics problems by the classical Lagrangian
as well as Hermitian type of the finite element method (FEM) [1] is influenced by dispersion
errors caused by both spatial and temporal discretizations [2]. A monochromatic harmonic
stress wave propagates in unbounded elastic continuum regardless of its frequency and corre-
spondingly a wave packet propagates without distortion. When these propagating phenomena
are modeled by FEM the speed of a single harmonic wave depends on its frequency and thus
a wave packet is distorted. The parasitic effects do not exist in ’ideal’ unbounded continuum.
The dispersive properties of one-dimensional Lagrangian and Hermitian elements were studied
in Ref. [3]. Furthermore, the finite element (FE) mesh behaves as a frequency filter - higher
frequencies are transfered with a strong attenuation.

The theoretical basis of the dispersion analysis of FEM for the solution of the hyperbolic
partial differential equation has been laid in [4], where the Gibb’s effect with the connection of
FEM was observed. The oscillations near the wavefront or the stress jump change do not van-
ish for the fine-grained mesh. Fourier method as the dispersion analysis tool of the numerical
solution of the hyperbolic partial differential equation is described in [5]. Very simple and effi-
cient computational strategy of the complex wavenumber Fourier analysis of FEM is presented
in Ref. [6].

In seismology the spectral finite elements [7] appeared recently. Spectral finite elements are
of h-type finite elements, where nodes have special positions along the elements corresponding
to the numerical quadrature schemes. But the displacements along element are approximated
by the Lagrangian interpolation polynomials. The spectral finite elements improve dispersion
errors for lower dispersion branches but not for upper ones.

A modern approach in the finite element analysis is the isogeometric analysis [8], where
shape functions are based on varied types of splines. For example, Bézier representation, B-
spline (basis spline), NURBS (non-uniform rational B-spline), PB-spline, T-spline and others
are used for spatial discretization. This approach has an advantage that the geometry and ap-
proximation of the field of unknown quantities is prescribed by the same technique. Another
benefit is that the approximation is smooth.

Dispersion of B-spline based finite elements was established for the same recurrent (uniform)
B-spline basis functions [5] approximating one dimensional infinite domain. It was shown, that
the optical modes did not exist and next, dispersion errors were reported to decrease with in-
creasing order of B-spline shape functions [9]. This is a very good result for the explicit dynam-
ics, where critical time step is bounded by the highest eigenfrequency of the whole system [10].

Generally, the B-spline or NURBS basis functions for bounded solids are not uniform.
For this reason, the non-homogeneity of basis functions near the boundary of the domain pro-
duces the dispersion and attenuation behavior. These behavior can be controled by parameter-
ization of B-spline entity, by order of piecewise polynomials, etc. In this paper, the dispersion
of B-spline based finite element will be determined for a one-dimensional elastic wave propa-
gation problem. Numerical parameters of B-spline representation will be tested to show their
dispersion and attenuation.
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2 PROPAGATION OF ELASTIC WAVES IN ONE-DIMENSIONAL CASE

In one-dimensional case the classical equation governing linear elastic wave propagation [11]
is given by

c20
∂2u

∂x2
− ∂2u

∂t2
= 0, where x ∈ (−∞,∞), t ∈ [0,∞), (1)

wherec0 denotes the wave propagation speed,u(x, t) is the displacement field,x is the position
andt is the time. The unbounded one-dimensional continuum is assumed, therefore boundary
conditions are not prescribed. The 1D continuum can be realized as a ’thin’ elastic bar, the
material of which is characterized by Young’s modulusE and mass densityρ. For a ’thin’
elastic bar, the wave speed is given byc0 =

√
E/ρ. In case of constantE andρ, the wave speed

is as well constant. Moreover, the value of wave speed is independent of the wavenumber or
frequency of wave. This continuum is called non-dispersive [11].

3 B-SPLINE BASED FINITE ELEMENT METHOD

Firstly, the B-spline basis functions will be mentioned, see details in Ref. [12]. For a given
knot vectorΞ, the B-spline basis functions are defined recursively starting with piecewise con-
stants (p = 0)

Ni,0 (ξ) =

{
1
0

if ξi ≤ ξ ≤ ξi+1,
otherwise.

(2)

The basis functionsNi,0(ξ) are step functions, equal to zero everywhere except on the half-open
intervalξ = [ξi, ξi+1), whereξ is parameter usually chosen so, thatξ = [0, 1].
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Figure 1: Example of cubic B-spline basis functions for ten control pointsn = 10 and uniform knot vectorΞ.
Red lines correspond to non-uniform basis functions and blue lines correspond to uniform (homogeneous) basis
functions. The number of non-uniform basis functions are depends on the polynomial order.

Forp = 1, 2, 3, ..., they are defined by

Ni,p (ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) . (3)

This is referred to as the Cox-de Boor recursion formula [12]. A knot vector in one dimensional
case is a non-decreasing set of coordinates in the parameter space, writtenΞ = {ξ1, ξ2, ..., ξm},
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whereξi ∈ R is thei-th knot,i is the knot index,i = 1, 2, . . . ,m, wherem = n + p + 1, p is
the polynomial order, andn is the number of basis functions used to construct a B-spline curve.
Equation (3) can yield the quotient0/0, for this case the quotient is prescribed zero. The main
properties ofNi,p, defined by (2) and (3), are introduced in Ref. [12]. Example of cubic B-spline
basis functions for ten control pointsn = 10 and uniform knot vector is displayed in Fig. 1.

Figure 2: Example of cubic B-spline curve for ten control points and uniform knot vector. The corresponding
control polygon is depicted.

In CAD technology [13] a B-spline curve is given by linear combination of B-spline basis
functionsNi,p [12]

C(ξ) =
n∑
i=1

Ni,p (ξ)Bi, (4)

whereBi, i = 1, 2, . . . , n are corresponding control points. Piecewise linear interpolation
of control points gives the so-called control polygon. Example of cubic B-spline curve with
its control polygon is shown in Fig. 2.

The open B-spline curve interpolating end points is used, where the knot vector is prescribed
as

Ξ = {a, . . . , a, ξp+2, . . . , ξn, b, . . . , b}, (5)

where values are usually set asa = 0 andb = 1. The multiplicity of the first and last knot
value isp + 1. If the valuesξp+1 up to ξn+1 are chosen uniformly, the knot vectorΞ is called
uniform knot vector, otherwise non-uniform, for more details see Ref. [12]. The B-spline curve
for the knot vector given by (5) is passed through the end points of the control polygon.

Analogically, the spatial coordinate for a one-dimensional continuum can be approximated
by linear combination of B-spline basis functionsNi,p

x(ξ) =
n∑
i=1

Ni,p (ξ)xB
i , (6)

wherexB
i , i = 1, 2, . . . , n are positions of control points in the x-direction. Furthermore, the ap-

proximation of the displacement fielduh by the B-spline approach is given by

uh(ξ) =
n∑
i=1

Ni,p (ξ)uB
i , (7)
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whereuB
i is the component of the vector of control variables – displacements corresponding

to the control points.
A scheme of a admissible dependence of a one dimensional displacement field based on B-

spline representation is presented in Fig. 3. Generally, the displacement field discretized by B-
spline technology in one-dimensional case can be controlled by following parameters:

• length of element patchh (h-refinement),

• polynomial orderp (p-refinement),

• number of control pointsn (k-refinement),

• positions of control pointsxB
i , i = 1, 2, . . . , n, (choice of parameterization),

• components of the knot vectorΞ and their multiplicities,

• continuity between patchesCm,m ≤ p− 1 order of continuity.

hi
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u ,n, p ,j j j j

B
XC

m

ij

x( )x

- control point
- boundary control point

u( )x

u ,n, p ,i i i i
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X

Figure 3: Scheme for permissible spatial discretization of a one-dimensional domain by B-spline based FE.hi de-
notes a length of B-spline segment,uB

i are control variables,ni is number of control points,pi denotes polynomial
order,Ξi denotes a knot vector for i-th B-spline segment.Cm

ij marks order of continuity between i-th and j-th
B-spline segment. Spatial coordinatex(ξ) and corresponding displacementu(ξ) are parametric functions of pa-
rameterξ.

In this paper,C0 continuity between B-spline segments with the identical lengthh is con-
sidered. The number of control pointsn, theirs positions and polynomial orderp are the same.
The knot value appears only once in the knot vector, but the first and last knot values appear
p + 1 times. Of course, the continuity of the displacement field inside the B-spline segment is
Cp−1.

In the following text, the continuous Galerkin’s approximation method [1] for the solution
of partial differential equations is employed. Spatial discretization of elastodynamics problems
by finite elements leads to the second order ordinary differential system in the form [1]

Mü + Ku = R. (8)

Here,M is the mass matrix,K the stiffness matrix,R is the time-dependent load vector,u and
ü contain nodal displacements and accelerations. Neglecting the loading we haveR = 0. A lot
of discrete time direct integration methods for the system (8) were developed [1]. However,
the time is considered continuous in this work.
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The element mass and stiffness matrices are given by

Me =
∫
he
ρHTH dx (9)

and
Ke =

∫
he
EBTB dx (10)

wherehe denotes the finite element length or length of B-spline segment,B is the strain-
displacement matrix,H stores the displacement interpolation (shape) functionshi [1]. For case
of B-spline based FEM, shape functions are denotedNi,p. Integrations (9) and (10) are carried
over the element domain. If the theory of linear elastodynamics is considered, then mass ma-
trix Me (9) and stiffness matrixKe (10) are constant. Global matrices are assembled in the
usual fashion. Mass matrix defined by (9) is called consistent mass matrix and this mass matrix
is employed in the following text. The stiffness matrixK and mass matrixM is computed
numerically by the Gauss-Legendre quadrature formula [1].

4 DISPERSION ANALYSIS

The complex wavenumber dispersion analysis was performed for one-dimensional finite el-
ements in Ref. [6]. In Fourier analysis [5], the displacementuhi corresponding to given spatial
discretization is prescribed in the form of wave solution

uhi = Aie
i(ωt−ψhxi), (11)

whereAi is displacement amplitude,ω is angular velocity, imaginary uniti =
√
−1 andxi is

the position. The discrete (numerical) wavenumberkh equals to the real part ofψh, kh = Reψh.
Imaginary partbh = Imψh has a physical meaning of the attenuation intensity.

In Fourier analysis, the assumed solution of (11) is inserted to the equation (1) and the dis-
persion relationω = f(kh) is obtained. The dispersion errors can be measured by non-
dimensional numerical phase speedch/c0, where numerical phase speed is defined by the
relationshipch = ω/kh. Mostly, the dispersion errors are depicted as a function of the non-
dimensional numerical wavenumberkhh, whereh is characteristic length of finite element do-
main or B-spline segment.

5 RESULTS OF DISPERSION ANALYSIS FOR B-SPLINE BASED FEM

In this section, the dispersion diagrams for B-spline based FEM are shown for different
number of control points with linear or non-linear parameterization and for different polyno-
mial order, respectively. These graphs are compared with results for classical Lagrangian finite
elements.

5.1 Uniform B-spline FEM versus classical finite element

Dispersion of one-dimensional Lagrangian FE was been studied in [3], [6]. The normalized
dispersion errors in phase speed are depicted in Fig. 4 (on the left). These errors are divergent
with the polynomial order of approximation of a displacement field. In Fig. 4 (on the left),h de-
notes the length of Lagrangian finite element. Nevertheless, the distances between uniformly-
spaced nodes areh/p. The wavenumbers are normalized, being divided by appropriate poly-
nomial orderp. Thus, the non-dimensional numerical wavenumbers are in the rangekhh/p =
[0, π]. The horizontal jumps in the dispersion graph on Fig. 4 (on the left) correspond to the at-
tenuating solution [14]. For higher order Lagrangian finite elements, the optical modes are
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occurred [2]. These vibration modes produce the spurious oscillations in numerical solutions
of transient elastodynamics problems.
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Figure 4: Dispersion errors for Lagrangian FE (on the left) [3], [6] and B-spline based FE (on the right) [9]
for different polynomial orderp. h denotes the finite element length,h̄ is the distance of uniformly-spaced control
points.

In Ref. [8], the errors of eigenfrequency of an elastic fixed-fixed bar computed by classical
FEM and B-spline based FEM are compared. The dependence of eigenfrequenceωh/ω on the
corresponding counter has the same character as the dependencech/c0 on the corresponding
non-dimensional wavenumberkhh. It is a consequence of the duality principle accomplished
in Ref. [9].

The dispersion analysis of B-spline based FEM has been investigated in Ref. [5], where
uniform basis shape functions are employed. This case is in agreement with a model of an in-
finite elastic ’thin’ bar. The dispersion graph for uniform B-spline based FEM is presented
in Fig. 4 (on the right), where the high mode behavior is convergent with the polynomial or-
der p of B-spline approach. The dispersion errors are decreasing with increasing polynomial
order. The permissible values of numerical wavenumberkhh̄ are in the range[0, π]. In Fig. 4
(on the right),h̄ denotes distance of uniformly-spaced control points. The optical modes and
attenuating solution in the right-open rangekhh̄ = [0, π) do not exist, but forkhh̄ = π the at-
tenuating solution arises. The spatial resolution limit corresponds to the numerical wavenumber
is khh̄ = π, where positions of control points are in the ’saw tooth’ oscillation form. The uni-
form B-spline based finite element for discretization of a one-dimensional domain produces
better dispersion dependence without optical modes and band gaps [14] with respect to the La-
grangian classical FEM [9].

REMARK: Another solution of wave equation (1) discretized by uniform B-spline based
FEM exists [9]. This solution is called evanescent solution [14]. This solution of discretized
system is characteric by non-zero imaginary parts ofψh and for the numerical wavenumber is
is valid khh̄ 6= iπ, i = 0, 1, 2, . . . , p, simultaneously. The number of the evanescent solutions
is p−1, see Ref. [9]. The evanescent solutions do not have practically meaning in the numerical
solution of wave equation due to their attenuating efect.

7
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5.2 Non-linear parameterization - uniformly-spaced control points

This section deals with the dispersion analysis for B-spline segments with polynomial or-
der p, different number of uniformly-spaced control points. And also with the uniform knot
vector and for case, where individual B-spline segments are connected only withC0 continu-
ity with theirs neighbouring B-spline segments. In Fig. 5 (on the left), dispersion errorsch/c0
of the quadratic (p = 2) B-spline based FE are drawn. In Fig. 5 (on the right) there are pre-
sented the dispersion errors for cubic (p = 3) B-spline based FE with different number of con-
trol points, whereh denotes the patch length of B-spline (see Fig. 3). For increasing number of
control points, the dispersion errors are convergent to value of wave speedc0 – i.e. to the exact
solution for continuum.

The vertical jumps pertain to the decay solution with non-zero attenuation. These parts
of the dispersion dependencies depict quantitatively the passing and band gaps in the frequency
range [14]. Thereby, the band gaps exist also for the B-spline based element method with
C0 continuity between B-spline segments. With increasing number of control points the band
gap range is decreasing and the maximal band gap range occurs in higher dispersion branches.
It can be shown, that dispersion errors are influenced by shape (basis) functionsNi,p defined
in the vicinity of patch domain boundary, see Fig. 1. The corresponding shape functions are not
homogeneous due the interpolation of end points [12].
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Figure 5: Dispersion errors for quadratic (on the left) and cubic (on the right) B-spline based FE with different
number of control points. The red line corresponds to homogeneous shape functions [9].

The dispersion dependencies in Fig. 5 can be redrawn to the normalized non-dimensional
wavenumberkhh/(n − 1). Which means that the abscissa variables are divided by the appro-
priate number of distances of control points, i.e.n− 1. The distance between uniformly-spaced
control points is̄h = h/(n − 1). It is the averaged distance of control points. The normalized
numerical wavenumbers are in the rangekhh/(n−1) ∈ [0, π]. The normalized dispersion errors
are depicted in Fig. 6, where corresponding dispersion errors for uniform B-spline shape func-
tions (Fig.4 (on the right)) are added. The normalized dispersion errors for quadratic B-spline
are shown in Fig. 6 (on the left) and for cubic B-spline are represented in Fig. 6 (on the right).
For clarity the number of control points in Fig. 6 is different from that appearing in Fig. 5. It
is of interest that the mentioned normalized dispersion errors are approaching to those of the
uniformly (homogeneous) B-spline shape functions (Fig. 4).
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For minimization of dispersion errors, the increasing number of control points (k-refinement)
is better than the partition of the B-spline segments (h-refinement). The higher order of conti-
nuity inside the B-spline produces more reliable dispersion behavior.
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Figure 6: Normalized dispersion errors for quadratic (on the left) and cubic (on the right) B-spline based FE
with different number of control points. The red line corresponds to homogeneous shape functions [9].

REMARK: For situations, where number of control points isn = p + 1 and B-spline seg-
ments are only connected withC0 continuity, the dispersion dependencies are identical with
those of Lagrangian finite elements (Fig. 4 (on the left)).

5.3 Linear parameterization - Graville abscissa

The simple modification of the previously shown B-spline non-linear parameterization is
based on a choice of special positions of control points. Good interpolation properties of B-
splines can also be obtained by so called Graville abscissa. In such a case the abscissa is
associated with the knot vectorΞ. See [15] and [16] for details. Thus, the control points are
given by the formula

x∗i (ξ) =
ξi+1 + . . .+ ξi+p

p
, i = 1, 2, . . . , n. (12)

The set of control points positions obtained this way (12) is usually called the set of averaged
collocation points or Greville collocation points. If the knot vector is chosen so, thata = 0,
b = 1 in (5) and the outside knots are withp + 1 multiplicity, then the boundary control points
are located onx∗1 = 0 andx∗n = 1. B-spline displacement field is passed through end points.
Therefore, the coordinatesxi, i = 1, 2, . . . , n of control points of B-spline segment with length
h are given by

x(ξ) = x∗i (ξ) · h. (13)

The fundamental property of this parameterization based on the Greville abscissa is such, that
Jacobians of the transformation from the parametric space to the physical space are constant for

arbitrary parameterξ, i.e. dx(ξ)
dξ = const for ∀ξ ∈ [0, 1] [16]. This parameterization is called

linear.
The normalized dispersion errorsch/c0 versus non-dimensional wavenumberkhh/(n − 1)

for quadratic B-spline with linear parameterization are shown in Fig. 7 and for cubic B-spline
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with linear parameterization are in Fig. 8, where influence of the number of control points is
displayed. The dispersion graphs are normalized with respect to the averaged distance between
the control points prescribed by relationship (12) and (13), respectively. The details ofch− kh-
curves presented in Figs. 7 (on the left) and 8 (on the left) are enlarged in Figs. 7 (on the right)
and 8 (on the right). The band gap ranges for this parameterization are rapidly disappearing.

0 1 2 3
0.9

1

1.1

1.2

1.3

1.4

1.5

 kh ⋅ h / (n−1)

ch  / 
c 0

quadratic B−spline based FE − lin. param.

n = 3
n = 4
n = 5
n = 6
n = 12
n = 24
homogeneous sh. f.

π 0 1 2 3
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

 kh ⋅ h / (n−1)

ch  / 
c 0

quadratic B−spline based FE − lin. param.
n = 3
n = 4
n = 5
n = 6
n = 12
n = 24
homogeneous sh. f.

π 

Figure 7: Normalized dispersion errors for quadratic B-spline based FE with linear parameterization. The red line
corresponds to homogeneous shape functions [9].
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Figure 8: Normalized dispersion errors for cubic B-spline based FE with linear parameterization. The red line
corresponds to homogeneous shape functions [9].

The dispersion curves for linear parameterization converge to the solution employing uni-
form (homogeneous) B-spline basis functions. For large number of control points, approxi-
matelyn ≥ 10, thep − 1 highest dispersion branchesω versuskh display a constant behavior.
From it follows that the group speedchg = dω/dkh = 0 and the dependence of phase speed
ch = ω/kh is a linear function with the negative slope. The wave corresponding to the lastp−1
dispersion branches are not propagated through a elastic bar discretized by B-spline approach.
The linear parameterization rapidly miminize the dispersion errors. The maximal error in phase
speed for quadratic B-spline discretization is less than7% and for cubic B-spline less than4%
thanks to the linear parametrization. This is very good property of B-spline based finite element
method for case, where connection between several B-spline segments are onlyC0.

10
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6 CONCLUSIONS

It was shown that the dispersion errors of B-spline based finite element method for increasing
number of control points converge to the continuum solution. The solution with high number
of control points is near by the solution for uniform B-spline shape functions. On the other hand,
its dependence is with jumps from the reason of existing of passing and band gaps. Moreover,
the spurious modes are reduced by the B-spline based spatial discretization thanks to higher
order of continuity of approximation of a unknown quantity (in this case displacement). Further,
the dispersion errors and ranges of band gaps can be similarly eliminated by a special choice
of positions of control points, for example, by the Greville abscissa. It is valid as well in the
case, where individual B-spline segments are only connected withC0 continuity. B-splines
basis functions as shape functions have a potential for using in high performance and accurate
finite element analysis of elastic wave propagation problems.

Acknowledgment

This work was supported by the grant projects GAČR P101/10/P376, 101/09/1630, 101/07/1471
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