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Abstract. In the present paper the results of the analytical model for a nonlinear stress-strain 

analysis of buried steel pipelines at active fault crossings are analyzed and discussed versus 

the numerical finite element results.  The analytical model is based on the partition of the 

pipeline into four segments. The two segments in high curvature zones on both sides of the 

fault are modeled as beams in bending and tension with direct account for the axial force in 

the equations of motion. The two other segments are treated as beams-on-elastic foundation. 

The interaction of the pipeline with the surrounding soil is taken into account in axial and 

transverse directions using bilinear soil diagrams. The nonlinearity of the pipe steel is intro-

duced on a cross-section level assuming a bilinear stress-strain relationship. The analysis is 

performed iteratively as a series of elastic solutions using a secant modulus of the pipe steel. 

The analysis of applicability of the proposed model to various cases of pipeline-fault intersec-

tion conditions is performed through the comparison of the results obtained with the analyti-

cal model to the results of the numerical simulation of the finite element model in ANSYS. The 

developed finite element model uses current technology ANSYS pipe elements with account 

for axial, bending, shear and torsional deformations, material nonlinearity, large displace-

ments and strain nonlinearities. The pipe-soil interaction is modeled by the nonlinear soil 

spring elements. The analysis of the results allows drawing the conclusion on the applicability 

of the proposed analytical methodology to a wide range of conditions met in practice, at least 

for the preliminary assessment. The limitations of the analytical methodology and possible 

further refinements are also discussed. 
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1 INTRODUCTION 

The advancement of the gas-transport systems to the regions of high seismic activity rein-

forces the actuality of the research in the field of seismic analysis and design of main gas 

pipelines. The research methods in stress-strain analysis of pipelines can be generally divided 

into analytical and numerical. Giving credit for a progress in numerical finite and boundary 

element methods, we still have to admit the actuality of analytical models which are well 

suited for preliminary analysis and provide basis for more advanced numerical techniques.  

It is well known that permanent ground deformation caused by relative displacements of 

adjacent parts of earth’s crust along the fault is among the most dangerous earthquake effects 

and can result in a pipe failure [1]. The first paper considering a fault crossing problem analyt-

ically was published by Newmark and Hall [2]. A case of pipeline intersecting a strike-slip 

fault at an angle 2/   is studied. The axial strain component is considered to have the 

major effect on the pipeline. The average axial tensile strains along the effective unanchored 

length are calculated using the pipeline elongation due to the axial component of the fault 

movement and due to the second-order effects caused by lateral component of the fault 

movement. Since the bending stiffness and lateral pipe-soil interaction is neglected and the 

axial strains are averaged over the unanchored length, the maximal strains are underestimated.       

Later, Kennedy et al. [3] extended the methodology proposed in [2]. The bending strains 

are introduced into the model based on a cable schematization. Given this assumption, ade-

quate results can only be obtained in the case of large fault movements in projection on the 

axial pipe direction producing substantial axial tensile strain component.  

Further advancements to the analytical models for a pipeline crossing strike-slip fault were 

made by Wang and Yeh [4]. Their model is based on a division of a pipe into four segments. 

The two segments in high curvature zone on both sides of the fault trace act as circular arcs, 

while the two other segments are considered as beams-on-elastic-foundation. The most signif-

icant shortcoming of the model is that the influence of axial force on the bending stiffness is 

neglected. Also, according to the model, the critical combination of the axial and bending 

strains develops at the ends of high curvature zones on each side of the fault. On the contrary, 

it can be shown [5, 6] that the maximal stresses and strains develop within these zones, closer 

to the fault intersection point.          

Recently, Karamitros et al. [5] introduced a number of substantial refinements to the above 

mentioned methodology. In the model, the two segments in high curvature zones are consi-

dered within the elastic beam theory taking into account the pipe-soil interaction in both axial 

and transverse directions. The elastoplastic behavior of the pipe steel is considered within a 

bilinear stress-strain relationship. The analysis is performed iteratively as a series of elastic 

solutions using a secant modulus of the pipe steel. The results of the developed model show 

good agreement with the finite element results for strike-slip fault crossings over a range of 

fault displacements D20 , where D is the pipe diameter, and the intersection angles 
00 45,30  and 060 .  

Some essential shortcomings of the previous methodologies are addressed in the paper by 

Trifonov and Cherniy [6]. In particular, no symmetry condition about the intersection point is 

used, allowing for different types of fault kinematics to be analyzed; the tension-bending inte-

raction is taken into account directly in the equations of motion of the two segments in high 

curvature zones on both sides of the fault; the contribution of transverse displacements to the 

axial elongation is included in calculation of axial stresses and strains. A good agreement was 

established between the results of the developed analytical model and finite-element model 

for a strike-slip and normal slip fault crossing problems.    
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In the present work, the application of model of the paper [6] to a strike-slip fault crossing 

problem is analyzed in comparison to the finite element results. In the following section the 

analytical model is briefly discussed. Next, in section 3 the numerical finite element model 

developed for the verification of the analytical methodology is presented, and the comparison 

of the analytical to numerical finite element results is performed. The limitations of the ana-

lytical model are also discussed. Finally, in section 4 some additional corrections to the ana-

lytical model are introduced and discussed in connection with the finite element results.     

2 ANALYTICAL MODEL OF A PIPELINE CROSSING ACTIVE FAULT 

2.1  Structural model of a pipeline in the fault zone 

Following the papers [5, 6], a pipeline is partitioned into four segments shown in figure 1. 

Point B represents the intersection of the pipeline with the fault trace; points A and C are the 

closest points of the pipeline axis with zero transverse displacements.   Points A’ and C’ are at 

a distance from A and C that is sufficient for the attenuation of transverse displacements.  

As the pipeline transverse displacements relative to surrounding soil are small on the seg-

ments AA’ and CC’, the pipe-soil interaction can be considered as elastic and a beam-on-

elastic foundation theory can be applied. The pipeline transverse displacements )(xw  follow 

the equation 

 0
4

4

 kw
dx

wd
EI  (1) 

where x  is the coordinate measured from the point A (or C), E  is the elastic modulus, I  is 

the moment of inertia of the cross-section, k  is the stiffness parameter of the elastic founda-

tion. Assuming that soil resistance in considered transverse direction is characterized by a bi-

linear diagram with the displacement at yield uw  and corresponding force uq , the stiffness of 

the elastic foundation is calculated as uu wqk / .  

The solution of the Eq. (1) is obtained with the use of the boundary conditions 0w  for 

0x  and 0w  for x :  

 xCexw x  sin)(   (2) 

where 
41)4/( EIk . 

The segments AB and BC are analyzed as elastic beams loaded with the axial force F and 

distributed transverse load q . The intensity of the distributed load is equal to the limit value 

of pipe-soil interaction force per unit length for considered transverse pipe displacement di-

rection relative to surrounding soil. This assumption is valid for the strike-slip fault crossing. 

In case of normal-slip fault with relatively small displacements an alternative partition ac-

counting for elastic soil behavior on the segment with downward relative pipeline movement 

gives better results. The details on this case are given in the paper [6]. In the following, we 

will concentrate on the analysis of a strike-slip crossing problem.          

The equilibrium equation for the beam under combined bending-tension can be obtained 

considering the equilibrium of the differential line element in the deformed configuration 

loaded with the constant axial force F and uniformly distributed transverse load q:   

 q
dx

wd
F

dx

wd
EI 

2

2

4

4

 (3) 
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Figure 1: Pipeline model at active fault crossing.  

The solution of Eq. (3) can be written in the form of initial parameters: 
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 (4) 

where EIF /2  . The parameters )0( , )0(M , and )0(V  are the rotation angle, bending 

moment, and transverse force for the section with 0x .  

The unknown parameters in Eq. (2) and (4) written for the corresponding pipe segments  

together with the unknown length parameters 1L  and 2L , are found from the boundary condi-

tions on the junction points A, B, and C . The resulting system of nonlinear algebraic equa-

tions can be solved numerically as shown in [6]. In the case of a strike-slip fault the pipeline-

soil interaction forces acting on the segments AB and BC are identical. The use of symmetry 

condition in this case simplifies the resulting system of equations which reduces to a single 

nonlinear equation solved by the Newton-Raphson technique.   

After the solution )(xw  is obtained, other quantities, such as rotation ),()( xwx   bend-

ing moment )()( xwEIxM   and transverse force )()()( xwFxwEIxV   can be evaluated 

(here the notation dxdww /  is used). Also, the maximum bending moment || maxM  can be 

derived for each segment. Further details on the structural model and solution procedure can 

be found in [6].   

2.2 Evaluation of the axial stress and strain 

The axial force in Eq.(3) is assumed constant and equal to the axial force at the intersection 

of the pipeline with the fault trace. The latter is calculated by equating the geometrically re-

quired and the stress-induced (available) pipeline elongations. 

The geometrically required elongation reqL  results from the fault movement in the axial 

direction and the pipeline elongation due to bending: 
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 dxwL
x

req

2

)(
2

1
cos     (5) 

where   is the fault displacement,   is the fault intersection angle. Integration in the second 

term in Eq. (5) is performed over the curved segments AB and BC.  

The available elongation avL  is evaluated by integrating the axial strains )(xa  over the 

unanchored length anchL ,  characterized by relative slippage of the pipe and the surrounding 

soil: 

 
anchL

aav dxxL
0

)(2   (6) 

In Eq. (6), it is assumed that the elongation on both sides of the fault trace is identical.  

Denoting the axial force and axial stress developing at the fault intersection point by aF  

and a , the unanchored length anchL  can be calculated as: 

 usauaanch tAtFL //   (7) 

where sA is the pipe cross-sectional area, and ut is the limit pipe-soil interface friction.  

The axial strain distribution over the length anchL  is obtained from the axial stress distribu-

tion  

 sua Axtx /)(    (8) 

assuming a bilinear stress-strain relationship for the pipe steel: 
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In Eq. (9), E  is the elastic modulus, tE  is the hardening parameter (plastic modulus), Y is 

the yield stress. 

Combining Eqs. (6), (8), and (9) and using the condition reqav LL  , the axial stress at 

the fault intersection can be evaluated as [5, 6]: 
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2.3 Modeling of the interaction between the axial and bending strains on sectional lev-

el 

If the plastic strains develop in the cross-section with the maximum bending moment, the 

axial and bending strains become interconnected. In particular, axial strains in the vicinity of 

the corresponding cross-section increase locally, ensuring the equilibrium between the stress-

integrated axial force and the applied axial force. To account for this effect, the stress and 

strain distributions over the cross-section have to be considered [6].  
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Under the assumption of plane cross-sections, the strain distribution on the cross-section 

with the maximum bending moment is given by 

  cosba   (11) 

where a  is the axial strain, and )2/(max EIDMb   is the maximal bending strain,   is the 

polar angle of the cross-section measured from the vertical diameter (figure 2).   
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Figure 2: Stress and strain distribution over the cross-section.  

In figure 2 the yield strain is denoted by Y  and the angles 2,1  define the portions of the 

cross-section that undergo yielding: 
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Accordingly, the distribution of stresses takes the form:  

 




















.

,

,0

),(

,

),(

2

21

1















YtY

YtY

E

E

E

 (13) 

The axial force and bending moment are evaluated by the stress-integration over the cross-

section with the use of Eq. (11) – (13):  
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Here, the notation 2/)( tDRm   is used. 

For the evaluation of the axial strain in the cross-section with the maximum bending mo-

ment the equilibrium condition between the applied axial force and the one obtained by the 

integration over the cross-section is used: 

 0),(  aba FF   (16) 

The Eq. (16) can be treated as a nonlinear function of a  and solved iteratively. 

To satisfy the moment equilibrium condition  

 0),( max  MM ba   (17) 

an iterative solution is performed using the secant Young’s modulus derived from the Eq. (17): 

 
b

ba

I

DM
E





2

),(
sec   (18) 

The specified procedure is applied separately to the segments AB and BC, yielding 1a , 2a  

and 1secE , 2secE , which are applied on the next iteration.  

2.4 The solution algorithm 

The described model can be implemented in a computer program according to the algo-

rithm given below. For a general fault kinematics the algorithm consists of the following steps 

(superscript k stands for the iteration number): 

1. Given the fault kinematics and the intersection angle, calculate the components of 

fault displacements in projection on the pipe coordinate system x and y . 

2. Using the transverse displacements from the previous iteration )()1(

1 xw k  and )()1(

2 xw k , 

calculate the elongation due to the pipe transverse displacements, the required elonga-

tion
)(k

reqL  and axial force )(k

aF  (section 2.2).  

3. Performing the solution of the structural problem (section 2.1) using the appropriate 

secant moduli )(

1sec

kE  and )(

2sec

kE , evaluate the lengths of the segments AB and BC 
)(

1

kL  

and 
)(

2

kL .  Evaluate the transverse displacements )()(

1 xw k
 and )()(

2 xw k
.   

4. Find the maximum absolute values of the bending moments on segments AB and BC 

max1M  and max2M . Evaluate the corresponding maximum bending strains 1b  and 2b .  

5. Evaluate the maximum axial strains on segments AB and BC 1a  and 2a  performing 

an iterative solution of Eq.(16) for segments AB and BC.  

6. Evaluate bending moments ),( 11

)(

1 ba

kM   and ),( 22

)(

2 ba

kM   on segments AB and 

BC. 
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7. Check the moment convergence. If the convergence criterion is satisfied, proceed to 

the next load step or terminate the solution (step 8). Otherwise, calculate secant mod-

uli )1(

1sec

kE  and )1(

2sec

kE  for segments AB and BC and go to the next iteration (step 2).  

8. Output the results and stop the solution. 

 

The initial displacement functions )()0(

1 xw  and )()0(

2 xw  used on the first iteration ( 1k ) 

for calculation of  
)1(

reqL   and )1(

aF  are taken as zero, if the total fault displacement is applied 

in one step, or as the displacements calculated on the previous load step, if the total fault dis-

placement is applied in several steps. The initial values of the secant moduli )1(

1secE  and )1(

2secE  

are equal to the elastic modulus E . 

The convergence of the described algorithm observed during numerical modeling is rather 

good for different fault intersection angles and total fault displacements. The number of itera-

tions necessary to meet the convergence criteria ranged from 1 to 7.  

3 THE RESULTS OF THE ANALYTICAL MODEL VERSUS FINITE ELEMENT 

MODEL   

3.1 Finite element pipeline model  

To analyze the applicability of the analytical model to practical cases of pipeline-fault in-

tersection conditions, a finite element model is developed. The finite element model treats a 

structural problem of pipeline crossing active fault more rigorously, thus, allowing the as-

sessment of the influence of simplifying assumptions adopted in the analytical model on the 

stress and strain predictions. The finite element model is implemented in ANSYS 12.1 [7]. A 

pipeline segment with the length 1000 m is considered. The fault intersection point is placed 

at the middle of the segment. The pipeline is clamped at the end on the stationary part of the 

fault and free at the end on the moving part of the fault. 

The pipeline segment is meshed by 1000 PIPE288 elements with the concentration of ele-

ments in the near-fault zone (taken as 50 m on both sides of the fault). The PIPE288 is a 

three-dimensional element based on Timoshenko beam theory with axial, bending, shear and 

torsion deformations included. Large displacements, strains, material nonlinearity are also ac-

counted for.  

 

Figure 3: A fragment of the finite element model. 
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The pipe-soil interaction is modeled by nonlinear spring COMBIN39 elements oriented in 

the three orthogonal directions. The element allows for arbitrary nonlinear force-deflection 

curve to be used. In the analysis, an elastic-perfectly plastic diagrams with characteristics cal-

culated according to ALA-ASCE [8] guidelines were used.  

A fragment of the finite element model is depicted in figure 3. 

The total fault displacement is applied in 50 steps with automatic substepping and conver-

gence control. The fault displacement components are prescribed to the free ends of the cor-

responding soil-spring elements on the moving part of the fault, while the soil-spring free 

ends on stationary part of the fault are fixed. On each step the solution quantities are output 

into the data files for subsequent analysis.     

3.2 Numerical results for the case of strike-slip fault crossing  

The numerical examples described in this section are based on the pipeline and soil data 

used in the papers [5, 6]. A natural gas pipeline with the external diameter 9144.0D  m, 

wall thickness 0119.0t  m is considered. The pipeline material has the following characte-

ristics: yield stress 490Y  MPa, elastic Young’s modulus 210E GPa, hardening mod-

ulus 088.1tE  GPa. The pipe-soil interaction is modeled by elastic-perfectly plastic 

diagrams. The corresponding parameters are calculated according to the ALA-ASCE  guide-

lines [8] for the case of medium-density sand with friction angle 036 , unit weight 18 kN/m
2
 

and pipe burial depth equal to 1.3 m.  

The fault intersection angles, taken for numerical simulation in papers [5, 6], ranged from 
030 to 060 . A good correspondence of the analytical results to numerical results was observed. 

But from the practical viewpoint, the case of intersection angle close to 090  is an important 

one. Therefore, it is desirable to determine the level of accuracy of the results obtained using 

the proposed analytical methodology in this range of angles. The case of a strike-slip fault 

will be considered below as practical example.  

Probably, the most representative quantity, characterizing the level of correspondence be-

tween the finite element and the analytical results, is the maximal strain in the pipe. Also, this 

parameter is the main characteristic used in the strain-based design procedures. Figure 4 illu-

strates the evolution of the maximal longitudinal strains with the fault displacement for the 

two values of the fault intersection angle 
030  (a) and 090  (b).  The solid line corresponds 

to the analytical solution while the dashed line represents the finite element solution.  
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Figure 4: Comparison of the analytical (solid lines) and finite element (dashed lines) solutions for the two 

cases of fault intersection. 
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Figure 5: Distributions of the transverse displacements and bending moments in the near-fault zone. 

It is seen that for the case 
030  the results are rather close in the whole range of values 

of the fault displacements, while for the case
090  the results substantially differ starting 

from 7.0/  D . The maximal difference near 40% is observed for 2/  D . 

To understand the cause of this discrepancy, other solution quantities were analyzed. The 

distributions of the transverse displacements and bending moments in the near-fault zone are 

depicted in figure 5. The correspondence of the finite element (dashed lines) and the analyti-

cal results is rather good in both cases.   

The distributions of the longitudinal strains are shown in figure 6. Total strain is a more 

sensitive parameter revealing substantial differences between the rigorous numerical model 

and approximate analytical model for the case of
090  (figure 6, b).  Surprisingly, the 

closeness of the results for 
030  (figure 6, a) is good, especially taking into account the 

approximate character of the analytical model and a rather complex shape of the strain distri-

bution. The sharp drop in strains on analytical results reflects the transition to the segments 

AA’ and CC’ considered as beams-on-elastic foundation with the initial Young’s modulus.          
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Figure 6: Distribution of the longitudinal strains in the near-fault zone. 



Oleg V. Trifonov, Vladimir P. Cherniy 

 

 11 

In the case 090 , numerical solution shows a concentration of deformations in relative-

ly narrow zones on both sides of the fault. These zones do not side the fault intersection point 

but are rather at distance of several meters. As shown in figure 7 representing the finite ele-

ment solution for plastic strains, the concentration of strains corresponds to the zones of plas-

ticity. These zones are compact and pronounced for 090 as in this case the bending 

dominates, while for 030  a substantial axial component of strain causes a dramatic “stret-

ching” of plastic zones.      

In the analytical model the potentially plastic zones (segments AB and BC) are bounded by 

the fault intersection point and the nearest point with zero relative pipe-soil displacements in 

transverse direction. Thus, for 090  plastic deformations in analytical solution are spread 

over substantially larger length than in numerical solution. Consequently, the equivalent se-

cant modulus is larger than the plastic modulus of the material and the maximal strains are 

smaller but more evenly distributed.               


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
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Figure 7: Distribution of the plastic strains in the near-fault zone (finite element solution). 

Hence, in the situations when bending is the prevailing mechanism of deformation, the 

analytical model would underestimate the maximal strains. On the other hand, in situations 

when axial strains are significant, the analytical model would give reasonable maximal strain 

predictions. In the next section a correction of the analytical methodology is suggested and 

illustrated on numerical examples.      

4 AN APPROXIMATE ACCOUNTING FOR THE STIFFNESS VARIATION 

WITHIN THE PROPOSED ANALYTICAL MODEL  

4.1 The stiffness correction method 

One of the simple ways to remedy the analytical results for the fault intersection angles 

close to 090  is based on stiffness correction within the segments AB and BC without per-

forming any changes in the basic methodology.  

For the final evaluation of strains, the initial beam is replaced by a beam with varying 

stiffness )(EIEI  , where   is a non-dimensional coordinate within the pipeline segment. 

It is considered that all other loading conditions remain the same, giving an identical moment 

distribution along the segment. This assumption is supported by relative closeness of the mo-

ment distributions for analytical and finite element solutions shown in figure 5. Thus, it seems 

reasonable to state the equivalence of the bending strain energies of the initial beam with the 

secant stiffness and the modified beam with varying stiffness:       
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 (19) 

Next, we adopt the following approximation of the stiffness distribution: 

 

 ))(()( secsecsec IbEIaEIaEEI    (20) 

where the shape function )(  is given by 

 









10),2(16

1,0,0
)(

234 


  (21) 

and  

 5.0/)( max  plxx  (22) 

Here, pl  is the support of the function )( , maxx is the position of the maximum bending 

moment within the segment. Parameter pl  defines the length of the concentration zone.  

For maxxx  we have: 5.0 ,   1)(   and IbEEI sec)(  . For  0x  and Lx   

(where L  is the segment length) under the condition Ll p   we have 0)(   and 

IaEEI sec)(  . Thus, the amount of stiffness variation is controlled by the parameters a  and 

b .    

As the strain concentration is connected to the strain variability within the segment and be-

comes higher with the strain growth, it is natural to consider the dependence of the parameters 

a and b on:  

 Maximal bending strains within the segment b ; 

 The parameter of unevenness taken as the ratio of average bending strains to the maxi-

mum bending strains: 

 bavb  /,  (23) 

where the average bending strain is calculated as 

 

L

bavb dxx
L

0

, )(
1

  (24) 

The parameter of unevenness is plotted on figure 8, a for various fault intersection angles 

based on the analytical solution. It is seen that this characteristic helps to differentiate the cas-

es where the concentration is insignificant and the ones with substantial strain concentration 

for large fault displacements. 

Picking out the bounding levels 1  and 2 , the following secondary parameter of uneven-

ness is introduced: 

 









1

111

1
,1

,



 ba
C  (25) 

where 

 ]/[)]()([ 2121111   CCa , ]/[)]()([ 211122111   CCb  (26) 
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Here )( 11 C  and )( 21 C  are the values of the parameter 1C  at bounding levels taken as  

1)( 11 C  and 2)( 21 C . The expression (25) is illustrated in figure 8, b.  
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
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b,max
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80

90

 / D  

Figure 8: (a) The parameter of unevenness for various fault intersection angles. (b) Secondary parameter of un-

evenness. 

To mitigate 1C  in the range of small strains the following parameter is used: 

 1,2 / bbC   (27) 

where 1,b  – some normalizing level taken in the following equal to 0.007. The numerical 

values of 1 , 2 , )( 11 C  and )( 21 C  are based entirely on analytical solution. The numerical 

value of 1,b  defines the amount of strain concentration. Actually, this is the only parameter 

which is fitted using the finite element results. Finally, the following characteristic of the 

strain concentration is derived: 

 









1,1

1,

21

2121

3
CC

CCCC
C  (28) 

The evolution of this characteristic with the fault displacement is shown in figure 9.  
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Figure 9: The characteristic of the strain concentration. 

The application of the obtained strain concentration parameter within the framework of Eq. 

(20) is given by the relations 

 3Ca  ,  3/1 Cb   (29) 

Thus, in the strain concentration region the original secant stiffness is reduced in 3C  times, 

while outside this region it is increased in 3C  times. The proposed relations are rather approx-
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imate but at least qualitatively represent the character of the actual stiffness distribution. The 

application of the proposed correction technique is illustrated in the following section. 

4.2 Corrected solution for various fault intersection angles 

Using the proposed correction procedure, the following steps within the basic solution al-

gorithm must be performed: 

1. Given the basic solution for the prescribed fault displacement, the parameters in Eq. (20) – 

(22) are determined.   

2. The corrected distribution of the bending strains is calculated according to the relation 

 
2)(

)(
)(

D

xEI

xM
xb   (30) 

3. The corrected maximal bending and total strains are then evaluated: 

 
2)(

)(

max

max D

xEI

xM
b  , max,max ab    (31) 

The strain correction procedure was applied to the pipeline-fault intersection analysis of 

section 3.2. Figure 10 illustrates the corrected stiffness distribution for the case 090 , 

2/  D . The lengths of the curved segments AB and BC were 91.921  LLL  m. The 

parameters of Eq. (20) – (22) were found to be 18.23 C , 05.6pl  m. 

0 2.5 5 7.5 10
0

1

2

3
EI(x)/EsecI

x, m

 

Figure 10: The corrected stiffness distribution on segments AB and BC for 090 , 2/  D . 

Figure 11 illustrates the application of the correction procedure to the analytical solution 

for crossing angles 030 , 000 80,60,45  and 090 . The maximal strains obtained with ana-

lytical model without correction (curves 1), analytical model with strain correction (curves 2), 

and finite element model (curves 3) are plotted against the fault displacement. It can be noted 

that the suggested correction procedure substantially improves the maximal strain assessment 

for crossing angles close to 090  with slight overestimate for small and moderate crossing an-

gles.  

In figure 12 the comparison of the bending strain distributions in the near fault zone is pre-

sented for 1,5.0/  D  and 2 m. The numbering of curves corresponds to the figure 11.   It 

can be concluded that the corrected strain distribution follows the exact (finite element) strain 

distribution quite closely for all three values of the fault displacement. In particular, for mod-

erate strains the plastic strains are small and strain concentration is not observed. As the plas-

tic strains caused by bending become large, the unevenness of strain distribution also grows 

and the effect of strain concentration is accounted for.     
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Figure 11: Evolution of the maximal strains with the fault displacement for different fault intersection angles. 
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Figure 12:  Bending strain distributions in the near fault zone for the case 090 . 
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5 CONCLUSIONS  

The analytical model for stress-strain analysis of pipelines crossing active faults described 

in paper [6] is outlined. The comparison of the numerical results obtained with the analytical 

model to the results of a more rigorous finite element model is performed for the case of 

strike-slip fault crossing at various intersection angles. The detailed analysis of the strain dis-

tributions in the near fault zone revealed the limitations of the analytical model. In particular, 

for the fault crossing angle close to 090  the difference in maximal strains is substantial for 

large fault displacements.  

Based on the performed analysis, a strain correction procedure is suggested. The results of 

the numerical simulation with the use of strain correction show good correspondence with the 

finite element results in the range of fault intersection angles from 030  to 090  and fault dis-

placements from 0 to 2D (where D is the pipe diameter). Thus, it can be concluded that the 

suggested procedure of strain correction extends the applicability of the original analytical 

model to the practically important case of pipeline crossing active fault at an angle close 

to 090 . The main advantage of the proposed procedure is its simplicity and direct applicability 

to the original pipeline model. The main drawbacks, as they are seen to the authors, are the 

mostly empirical character of the correction procedure and the need to use an exact numerical 

solution for preliminary calibration of the strain correction parameters.  
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