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Abstract. The interior of the Earth is heterogeneous with different material and may have com-
plex geometry. The free surface can also be uneven. Therefore, the use of a meshless method
with the possibility of using and irregular grid-point distribution can be interest for modelling
this kind of problem.
This paper shows the application of Generalized Finite Difference Method (GFDM) to the prob-
lem of seismic wave propagation in 2-D. To use this method in unbounded domains one must
truncate the computational grid-point avoiding reflection from the edges. Perfectly Matched
Layers (PML) absorbing boundary condition has then been included in the numerical model
proposed in this work.
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1 Introduction

During recent years, meshless methods have emerged as a class of effective numerical meth-
ods which are capable of avoiding the difficulties encountered in conventional computational
mesh based methods. Considerable research in computational mechanics has been devoted to
the development of meshless methods. In these methods, the domain of interest is discretized
by a scattered set of points.
An important path in the evolution of meshless methods has been the development of the Gen-
eralized Finite Difference Method (GFDM), also called Meshless Finite Difference Method
(MFDM). The bases of the GFD were published in the early seventies. The idea of using an
eight node star and weighting functions to obtain finite difference formulae for irregular meshes,
was first put forward by [9] using moving least squares (MLS) interpolation and an advanced
version of the GFDM was given by [12]. [1] reported that the solution of the generalized finite
difference method depends on the number of nodes in the cloud, the relative coordinates of the
nodes with respect to the star node, and on the weight function employed.
An h-adaptive method in GFDM is described in [2], [4] and [5].
In this paper, this meshless method is applied to seismic wave propagation. The GFDM is a
robust numerical method applicable to structurally complex media. Due to its relative accuracy
and computational efficiency it is the dominant method in modeling earthquake motion [10]
and [11]. The perfectly matched layer (PML) absorbing boundary performs more efficiently
and more accurately than most traditional or differential equation-based absorbing boundaries
([6], [7], [13] and [8]).
The paper is organized as follows. Section 1 is an introduction. Section 2 describes the GFDM
obtaining the explicit generalized differences schemes for the seismic waves propagation. In
Section 3 a stability condition is obtained. In Section 4 the grid dispersion relations is derived.
In Section 5 are analyzed the relations between irregularity of cloud of nodes, the step of time
and star-dispersion. In Section 6 an PML is defined in 2-D. In Section 7 some numerical results
are included. Finally, in Section 8 some conclusions are given.

2 Explicit Generalized Differences Schemes for the seismic waves propagation problem
for a perfectly elastic, homogeneous and isotropic medium

2.1 Equation of motion

The equations of motion for a perfectly elastic, homogeneous, isotropic medium in 2-D are
∂2Ux(x, y, t)

∂t2
= α2∂

2Ux(x, y, t)

∂x2
+ β2∂

2Ux(x, y, t)

∂y2
+ (α2 − β2)

∂2Uy(x, y, t)

∂x∂y
∂2Uy(x, y, t)

∂t2
= β2∂

2Uy(x, y, t)

∂x2
+ α2∂

2Uy(x, y, t)

∂y2
+ (α2 − β2)

∂2Ux(x, y, t)

∂x∂y

(1)

with the initial conditions

Ux(x, y, 0) = f1(x, y);Uy(x, y, 0) = f2(x, y)

∂Ux(x, y, 0)

∂t
= f3(x, y);

∂Uy(x, y, 0)

∂t
= f4(x, y) (2)

and the boundary condition{
a1Ux(x0, y0, t) + b1

∂Ux(x0,y0,t)
∂n

= g1(t)

a2Uy(x0, y0, t) + b2
∂Uy(x0,y0,t)

∂n
= g2(t)

en Γ (3)
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wheref1(x, y), f2(x, y), f3(x, y), f4(x, y), g1(t) y g2(t) are showed functions,

α =

√
λ+ 2µ

ρ
, β =

√
µ

ρ

ρ is the density,λ andµ are Laḿe elastic coefficients andΓ is the boundary ofΩ.

2.2 A GFDM Explicit Scheme

The aim is to obtain explicit linear expressions for the approximation of partial derivatives
in the points of the domain. First of all, an irregular grid or cloud of points is generated in the
domainΩ ∪ Γ. On defining the central node with a set of nodes surrounding that node, the
star then refers to a group of established nodes in relation to a central node. Every node in the
domain has an associated star assigned to it.
This scheme uses the central-difference form for the time derivative

∂2Ux(x0, y0, n4t)
∂t2

=
un+1

x,0 − 2un
x,0 + un−1

x,0

(4t)2
;

∂2Uy(x0, y0, n4t)
∂t2

=
un+1

y,0 − 2un
y,0 + un−1

y,0

(4t)2

(4)
Following [1], [2] and [4], the explicit difference formulae for the spatial derivatives are ob-
tained,

∂2Ux(x0, y0, n4t)
∂x2

= −m0u
n
x,0 +

N∑
j=1

mju
n
x,j;

∂2Uy(x0, y0, n4t)
∂x2

= −m0u
n
y,0 +

N∑
j=1

mju
n
y,j

∂2Ux(x0, y0, n4t)
∂y2

= −η0u
n
x,0 +

N∑
j=1

ηju
n
x,j;

∂2Uy(x0, y0, n4t)
∂y2

= −η0u
n
y,0 +

N∑
j=1

ηju
n
y,j

∂2Ux(x0, y0, n4t)
∂x∂y

= −ζ0un
x,0 +

N∑
j=1

ζju
n
x,j;

∂2Uy(x0, y0, n4t)
∂x∂y

= −ζ0un
y,0 +

N∑
j=1

ζju
n
y,j (5)

whereN is the number of nodes in the star whose central node has the coordinates(x0, y0) (in
this workN = 8 and the are selected by using the four quadrants criteria ([?])).
m0, η0, ζ0 are the coefficients that multiply the approximate values of the functionsU andV at
the central node for the timen4t (un

0 andvn
0 respectively) in the generalized finite difference

explicit expressions for the space derivatives.
mj, ηj, ζj are the coefficients that multiply the approximate values of the functionsU andV
at the rest of the star nodes for the timen4t (un

j andvn
j respectively) in the generalized finite

difference explicit expressions for the space derivatives.
The replacement in Eq. 1 of the explicit expressions obtained for the partial derivatives leads to
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un+1
x,0 = 2un

x,0 − un−1
x,0 + (4t)2[α2(−m0u

n
x,0 +

N∑
1

mju
n
x,j) + β2(−η0u

n
x,0 +

N∑
1

ηju
n
x,j)

+(α2 − β2)(−ζ0un
y,0 +

N∑
1

ζju
n
y,j)]

un+1
y,0 = 2un

y,0 − un−1
y,0 + (4t)2[β2(−m0u

n
y,0 +

N∑
1

mju
n
y,j) + α2(−η0u

n
y,0 +

N∑
1

ηju
n
y,j)

+(α2 − β2)(−ζ0un
x,0 +

N∑
1

ζju
n
x,j)]

(6)

3 Stability Criterion

For the stability analysis the first idea is to make a harmonic decomposition of the approxi-
mated solution at grid points and at a given time level (n). Then we can write the finite difference
approximation in the nodes of the star at timen, as

un
0 = AξneikT x0 ; un

j = AξneikT xj ; vn
0 = BξneikT x0 ; vn

j = BξneikT xj (7)

wherex0 is the position vector of the central node of the star,xj , j = 1, · · · , N are the position
vectors of the rest of the nodes in the star andhj are the relative position vectors of the nodes
in the star in respect to the central node whose coordinates arehjx = xj − x0, hjy = yj − y0.
ξ is the amplification factor whose value will determine the stability condition,w is the angular
frequency in the grid.

xj = x0 + hj ; ξ = e−iw4t

k (fig. 1) is the column vector of the wave numbers

k =

{
kx

ky

}
= k

{
cosϕ
sinϕ

}
Then we can write the stability condition as:‖ξ‖ ≤ 1.

Figure 1: Irregular star (9 nodes) The wavenumber~k
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Including 7 into 6, cancelation ofξneiνT x0 , leads to

Aξ = 2A− A

ξ
+ (4t)2[α2(−Am0 + A

N∑
1

mje
ikT hj ) + β2(−Aη0 + A

N∑
1

ηje
ikT hj )+

(α2 − β2)(−Bζ0 +B

N∑
1

ζje
ikT hj )]

Bξ = 2B − B

ξ
+ (4t)2[β2(−Bm0 +B

N∑
1

mje
ikT hj ) + α2(−Bη0 +B

N∑
1

ηje
ikT hj )+

(α2 − β2)(−Aζ0 + A
N∑
1

ζje
ikT hj )] (8)

where

m0 =
N∑
1

mj; η0 =
N∑
1

ηj; ζ0 =
N∑
1

ζj (9)

Including 9 into 8, the system of equations is obtained

A[ξ − 2 +
1

ξ
+ (4t)2α2

N∑
1

mj(1− eikT hj ) + (4t)2β2

N∑
1

ηj(1− eikT hj )]

+B(4t)2(α2 − β2)
N∑
1

ζj(1− eikT hj ) = 0

A(4t)2(α2 − β2)
N∑
1

ζj(1− eikT hj ) +B[ξ − 2 +
1

ξ
+ (4t)2β2

N∑
1

mj(1− eikT hj )

+ (4t)2α2

N∑
1

ηj(1− eikT hj )] = 0 (10)

B can be obtained from the second equation and included into the first, then operating with the
real and imaginary parts of conditions obtained, and canceling with conservative criteria, the
condition for stability of star is obtained.

4t <
√

4

(α2 + β2)[(|m0|+ |η0|) +
√

(m0 + η0)2 + ζ2
0 ]

(11)

4 Star dispersion

4.1 Star-dispersion relations for the P and S waves

The real part of the condition obtained from Eq. 10 leads to

ω =
1

4t
arccos Φ (12)
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where

Φ = 1− (4t)2

4
((α2 + β2)(a1 + a3) + ((α2 + β2)2(a1 + a3)

2+

4[(α2 − β2)2(a2
5 − a2

6) + (α2a2 + β2a4)(β
2a2 + α2a4)− (α2a1 + β2a3)(β

2a1 + α2a3)])

1

2 )
(13)

with

a1 =
N∑
1

mj(1− cos kT hj) ⇒
∂a1

∂k
= a1,k =

N∑
1

mjd sin kd

a2 =
N∑
1

mj sin kT hj ⇒
∂a2

∂k
= a2,k =

N∑
1

mjd cos kd

a3 =
N∑
1

ηj(1− cos kT hj) ⇒
∂a3

∂k
= a3,k =

N∑
1

ηjd sin kd

a4 =
N∑
1

ηj sin kT hj ⇒
∂a4

∂k
= a4,k =

N∑
1

ηjd cos kd

a5 =
N∑
1

ζj(1− cos kT hj) ⇒
∂a5

∂k
= a5,k =

N∑
1

ζjd sin kd

a6 =
N∑
1

ζj sin kT hj ⇒
∂a6

∂k
= a6,k =

N∑
1

ζjd cos kd (14)

and
kT hj = k(hjx cosϕ+ hjy sinϕ) = kd

Is known that

ω = 2π
cgrid

λgrid
(15)

wherecgrid andλgrid are the phase velocity (αgrid or βgrid) and the wavelength (λgrid
P or λgrid

S )
in the star respectively.
Defining the relations:

s =
2

λgrid
S

√
(r2 + 1)[(|m0|+ |η0|) +

√
(m0 + η0)2 + ζ2

0 ]
(16)

sP =
2

λgrid
P

√
(r2 + 1)[(|m0|+ |η0|) +

√
(m0 + η0)2 + ζ2

0 ]
(17)

p =
β4t

√
(r2 + 1)[(|m0|+ |η0|) +

√
(m0 + η0)2 + ζ2

0 ]

2
(18)

r =
α

β
(19)
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sP =
s

r
(20)

Substituting Eqs. 12, 17, 18 and 20 into Eq. 15, the star-dispersion relations for P and S waves
are obtained:

αgrid

α
=

arccos Φ

2πsp
(21)

βgrid

β
=

arccos Φ

2πsp
(22)

4.2 Star-dispersion for group velocity

By definition the group velocity is the derivative ofw (see Eq.12) with respect tok, thus

αgrid
group =

∂w

∂k
=
4t
4

β2Υ√
1− Φ2

(23)

where

Υ = (r2 + 1)(a1,k + a3,k) +
1

2
[2(r2 + 1)2(a1 + a3)(a1,k + a3,k)+

4[2(r2 − 1)2(a5a5,k − a6a6,k) + (r2a2,k + a4,k)(a2 + r2a4)+

(r2a2 + a4)(a2,k + r2a4,k)− (r2a1,k + a3,k)(a1 + r2a3)−
(r2a1 + a3)(a1,k + r2a3,k)]]× [(r2 + 1)2(a1 + a3)

2+

4[(r2 − 1)2(a2
5 − a2

6) + (r2a2 + a4)(a2 + r2a4)− (r2a1 + a3)(a1 + r2a3)]]
−
1

2 (24)

Defining

F = (r2 + 1)(a1 + a3) + [(r2 + 1)2(a1 + a3)
2+

4[(r2 − 1)2(a2
5 − a2

6) + (r2a2 + a4)(a2 + r2a4)− (r2a1 + a3)(a1 + r2a3)]]

1

2 ] (25)

and substituting Eqs. 18 and 25 into Eq. 23, the star-dispersion for waves P and S are

αgrid
group

α
=

1

2
√

2r

Υ√√√√F − (
pF√

(r2 + 1)[(|m0|+ |η0|) +
√

(m0 + η0)2 + ζ2
0 ]
√

2
)2

(26)

βgrid
group

β
=

1

2
√

2

Υ√√√√F − (
pF√

(r2 + 1)[(|m0|+ |η0|) +
√

(m0 + η0)2 + ζ2
0 ]
√

2
)2

(27)
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5 Irregularity of the star ( IIS) and dispersion

In this section we are going to define the index of irregularity of a star (IIS) and also the
index of irregularity of a cloud of nodes (IIC).
The coefficientsm0, η0, ζ0 are functions of: a) the number of nodes in the star, b) the coordinates
of each star node referred to the central node of the star and c) the weighting function (see
references[1, 4]). If the number of nodes by star is fixed, in this case 9 (N = 8), and the
weighting function

w(hjx, hjy) =
1

(
√
h2

jx + h2
jy)

3
(28)

the expression
1√

(r2 + 1)[(|m0|+ |η0|) +
√

(m0 + η0)2 + ζ2
0 ]

(29)

is function of the coordinates of each node of star referred to its central node.
The coefficientsm0, η0, ζ0, are functions of 1

h2
jx+h2

jy
.

Denotingτl a the average of the distances between of the nodes of the starl and its central node
and denotingτ the average of theτl values in the stars of the mesh, then

hj = τ

{
hjx

hjy

}
(30)

m0 = m0τ
2; η0 = η0τ

2; ζ0 = ζ0τ
2 (31)

The stability criterion can be rewritten

4t < 2τ

β
√

(r2 + 1)

√
(|m0|+ |η0|) +

√
(m0 + η0)2 + ζ0

2

(32)

For the regular mesh case, the inequality 32 is

4t < τ

β
√
r2 + 1

2(
√

2− 1)
√

3√
5

(33)

Multiplying the right-hand side of inequality 35 by the factor
√

5(
√

2 + 1)√
3(|m0|+ |η0|+

√
(m0 + η0)2 + ζ0

2
)

(34)

the inequality 32 is obtained.
For each one of the stars of the cloud of nodes, we define the IIS for a star with central node in
(x0, y0) as Eq. 34

IIS(x0,y0) =

√
5(
√

2 + 1)√
3(|m0|+ |η0|+

√
(m0 + η0)2 + ζ0

2
)

(35)

8
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that takes the value of one in the case of a regular mesh and0 < IIS ≤ 1
If the indexIIS decreases, then absolute values ofm0, η0, ζ0 increases and then according with
33,4t decreases and star dispersion increases (see 21, 22, 26 and 27).
The irregularity index of a cloud of nodes (IIC) is defined as the minimum of all the IIS of the
stars of a cloud of nodes

IIC = min{IIS(xz ,yz)/z = 1, · · · , NT} (36)

whereNT is the total number of nodes of the domain.

6 Recursive Equations

6.1 Recursive equations with PML in x-direction.

For computational convenience, we split the second order equations of motion (1) into five
coupled first order equations by introducing the new field variablesγxx, γxy, γyy

ρ
∂Ux(x, y, t)

∂t
=
∂γxx(x, y, t)

∂x
+
∂γxy(x, y, t)

∂y

ρ
∂Uy(x, y, t)

∂t
=
∂γxy(x, y, t)

∂x
+
∂γyy(x, y, t)

∂y

∂γxx(x, y, t)

∂t
= (λ+ 2µ)

∂Ux(x, y, t)

∂x
+ λ

∂Uy(x, y, t)

∂y

∂γxy(x, y, t)

∂t
= µ

∂Ux(x, y, t)

∂y
+ µ

∂Uy(x, y, t)

∂x

∂γyy(x, y, t)

∂t
= λ

∂Ux(x, y, t)

∂x
+ (λ+ 2µ)

∂Uy(x, y, t)

∂y

(37)

We shall make two simplifications, we shall assume that the space far from the region of interest
is homogeneous, linear and time invariant.Then, under these assumptions, the radiating solution
in infinite space must be (superposition of plane waves):

ω(x, t) = W (x, t)ei(κ·x−wt) (38)

As w is an analytic function ofx,then we can analytically continue it, evaluating the solution
at complex values ofx. Then, the solution is not changed in the region of interest and the
reflections are avoided.

Ux(x, y, t) = ux(x, y)e−iwt ⇒ U̇x(x, y, t) = −iwux(x, y)e−iwt = −iwUx(x, y, t)
Uy(x, y, t) = uy(x, y)e−iwt ⇒ U̇y(x, y, t) = −iwuy(x, y)e−iwt = −iwUy(x, y, t)
γxx(x, y, t) = Γxx(x, y)e−iwt ⇒ γ̇xx(x, y, t) = −iwΓxx(x, y)e−iwt = −iwγxx(x, y, t)
γxy(x, y, t) = Γxy(x, y)e−iwt ⇒ γ̇xy(x, y, t) = −iwΓxy(x, y)e−iwt = −iwγxy(x, y, t)
γyy(x, y, t) = Γyy(x, y)e−iwt ⇒ γ̇yy(x, y, t) = −iwΓyy(x, y)e−iwt = −iwγyy(x, y, t)

(39)

Thus, we have a complex coordinate

x̃ = x+ if (40)

As this complex coordinate is inconvenient, we have a change variables in this region (PML)

∂x̃ = (1 + i
df

dx
)∂x (41)

9
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In order to have an attenuation rate in the PML independent of frequency (ω), we have

df

dx
=
δx(x)

ω
(42)

whereω is the angular frequency andδx is some function ofx.
PML x-dir can be conceptually assumed up by a single transformation of the original equation.
Then wherever an x derivative appears in the wave equations, it is replaced in the form

∂

∂x
→ 1

1 + i δx(x)
w

∂

∂x
(43)

The equations are fecuency-dependent, and to advoid it a solution is to use an auxiliary differ-
ential equation (ADE) approach in the implementation of PML. The following equations are
obtained

∂Ux(x, y, t)
∂t

=
1
ρ
[
∂γxx(x, y, t)

∂x
+
∂γxy(x, y, t)

∂y
] + ψ1(x, y, t)− δxUx(x, y, t)

∂Uy(x, y, t)
∂t

=
1
ρ
[
∂γxy(x, y, t)

∂x
+
∂γyy(x, y, t)

∂y
] + ψ2(x, y, t)− δxUy(x, y, t)

∂γxx(x, y, t)
∂t

= (λ+ 2µ)
∂Ux(x, y, t)

∂x
+ λ

∂Uy(x, y, t)
∂y

+ ψ3(x, y, t)− δxγxx(x, y, t)

∂γxy(x, y, t)
∂t

= µ
∂Ux(x, y, t)

∂y
+ µ

∂Uy(x, y, t)
∂x

+ ψ4(x, y, t)− δxγxy(x, y, t)

∂γyy(x, y, t)
∂t

= λ
∂Ux(x, y, t)

∂x
+ (λ+ 2µ)

∂Uy(x, y, t)
∂y

+ ψ5(x, y, t)− δxγyy(x, y, t)

∂ψ1(x, y, t)
∂t

=
δx
ρ

∂γxy(x, y, t)
∂y

∂ψ2(x, y, t)
∂t

=
δx
ρ

∂γyy(x, y, t)
∂y

∂ψ3(x, y, t)
∂t

= λδx
∂Uy(x, y, t)

∂y
∂ψ4(x, y, t)

∂t
= µδx

∂Ux(x, y, t)
∂y

∂ψ5(x, y, t)
∂t

= (λ+ 2µ)δx
∂Uy(x, y, t)

∂y

(44)

Where the five last equations 46 are ADE approach and the new field variables

ψ1(x, y, t) =
1

ρ
i
δx
ω

∂γxy(x, y, t)

∂y

ψ2(x, y, t) =
1

ρ
i
δx
ω

∂γyy(x, y, t)

∂y

ψ3(x, y, t) = iλ
δx
ω

∂Uy(x, y, t)

∂y

ψ4(x, y, t) = iµ
δx
ω

∂Ux(x, y, t)

∂y

ψ5(x, y, t) = i(λ+ 2µ)
δx
ω

∂Uy(x, y, t)

∂y

(45)
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6.1.1 An scheme in GDFM for elastic part

Following [1], [2] and [4], the explicit difference formulae for the spatial derivatives of a
function are obtained,

∂Ux(x0, y0, n4t)
∂x

= −m1,0u
n
x,0+

N∑
j=1

m1,ju
n
x,j;

∂Ux(x0, y0, n4t)
∂y

= −m2,0u
n
x,0+

N∑
j=1

m2,ju
n
x,j

(46)
and similarly for first spatial derivatives of the functions:Uy, γxx, γxy, γyy, ψ1, ψ2, ψ3, ψ4, ψ5

Substituting Eq. 46 into Eq. 37 the an scheme in GFDM for elastic part are obtained

un+1
x,0 = un

x,0 +
4t
ρ

[−m1,0γ
n
xx,0 +

N∑
j=1

m1,jγ
n
xx,j −m2,0γ

n
xy,0 +

N∑
j=1

m2,jγ
n
xy,j]

un+1
y,0 = un

y,0 +
4t
ρ

[−m1,0γ
n
xy,0 +

N∑
j=1

m1,jγ
n
xy,j −m2,0γ

n
yy,0 +

N∑
j=1

m2,jγ
n
yy,j]

γn+1
xx,0 = γn

xx,0 +4t[(λ+ 2µ)(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)

+λ(−m2,0u
n
y,0 +

N∑
j=1

my,ju
n
2,j)]

γn+1
xy,0 = γn

xy,0 +4t[µ(−m2,0u
n
x,0 +

N∑
j=1

m2,ju
n
x,j)

+µ(−m1,0u
n
y,0 +

N∑
j=1

m1,ju
n
y,j)]

γn+1
yy,0 = γn

yy,0 +4t[λ(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)

+(λ+ 2µ)(−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j)]

(47)
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6.1.2 An scheme in GDFM for PML part

Substituting Eq. 46 into Eq. 44 the an scheme in GFDM for PML part are obtained

un+1
x,0 = un

x,0 +
4t
ρ

[−m1,0γ
n
xx,0 +

N∑
j=1

m1,jγ
n
xx,j−

m2,0γ
n
xy,0 +

N∑
j=1

m2,jγ
n
xy,j] +4t[ψn

1,0 − δxu
n
x,0]

un+1
y,0 = un

y,0 +
4t
ρ

[−m1,0γ
n
xy,0 +

N∑
j=1

m1,jγ
n
xy,j−

m2,0γ
n
yy,0 +

N∑
j=1

m2,jγ
n
yy,j] +4t[ψn

2,0 − δxu
n
y,0]

γn+1
xx,0 = γn

xx,0 +4t[(λ+ 2µ)(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)+

λ(−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j)] +4t[ψn

3,0 − δxγ
n
xx,0]

γn+1
xy,0 = γn

xy,0 +4t[µ(−m2,0u
n
x,0 +

N∑
j=1

m2,ju
n
x,j)+

µ(−m1,0u
n
y,0 +

N∑
j=1

m1,ju
n
y,j)] +4t[ψn

4,0 − δxγ
n
xy,0]

γn+1
yy,0 = γn

yy,0 +4t[λ(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)+

(λ+ 2µ)(−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j)] +4t[ψn

5,0 − δxγ
n
yy,0]

ψn+1
1,0 = ψn

1,0 +
4t
ρ
δx[−m2,0γ

n
xy,0 +

N∑
j=1

m2,jγ
n
xy,j]

ψn+1
2,0 = ψn

2,0 +
4t
ρ
δx[−m2,0γ

n
yy,0 +

N∑
j=1

m2,jγ
n
yy,j]

ψn+1
3,0 = ψn

3,0 + λ4tδx[−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j]

ψn+1
4,0 = ψn

4,0 + µ4tδx[−m2,0u
n
x,0 +

N∑
j=1

m2,ju
n
x,j]

ψn+1
5,0 = ψn

5,0 + (λ+ 2µ)4tδx[−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j]

(48)
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6.2 Recursive equations with PML in x-direction and y-direction.

In this case 
∂

∂x
→ ∂

∂x
(1 + i

δ

ω
)−1

∂

∂y
→ ∂

∂y
(1 + i

δ

ω
)−1

(49)

We obtain 

∂Ux(x, y, t)
∂t

=
1
ρ
[
∂γxx(x, y, t)

∂x
+
∂γxy(x, y, t)

∂y
]− δUx(x, y, t)

∂Uy(x, y, t)
∂t

=
1
ρ
[
∂γxy(x, y, t)

∂x
+
∂γyy(x, y, t)

∂y
])− δUy(x, y, t)

∂γxx(x, y, t)
∂t

= (λ+ 2µ)
∂Ux(x, y, t)

∂x
+ λ

∂Uy(x, y, t)
∂y

− δγxx(x, y, t)

∂τxy(x, y, t)
∂t

= µ
∂Ux(x, y, t)

∂y
+ µ

∂Uy(x, y, t)
∂x

− δγxy(x, y, t)

∂γyy(x, y, t)
∂t

= λ
∂Ux(x, y, t)

∂x
+ (λ+ 2µ)

∂Uy(x, y, t)
∂y

− δγyy(x, y, t)

(50)

6.2.1 An scheme in GDFM for elastic part

The equations of the elastic part is given by Eq. 47

6.2.2 An scheme in GDFM for PML part

Substituting Eq. 46 into Eq. 50 the an scheme in GFDM for PML part are obtained

un+1
x,0 = un

x,0 +
4t
ρ

[−m1,0γ
n
xx,0 +

N∑
j=1

m1,jγ
n
xx,j−

m2,0γ
n
xy,0 +

N∑
j=1

m2,jγ
n
xy,j ]−4tδun

x,0

un+1
y,0 = un

y,0 +
4t
ρ

[−m1,0γ
n
xy,0 +

N∑
j=1

m1,jγ
n
xy,j−

m2,0γ
n
yy,0 +

N∑
j=1

m2,jγ
n
yy,j ]−4tδun

y,0

γn+1
xx,0 = γn

xx,0 +4t[(λ+ 2µ)(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)+

λ(−m2,0u
n
y,0 +

N∑
j=1

my,ju
n
y,j)]−4tδγn

xx,0

γn+1
xy,0 = γn

xy,0 +4t[µ(−m2,0u
n
x,0 +

N∑
j=1

m2,ju
n
x,j)+

µ(−m1,0u
n
y,0 +

N∑
j=1

m1,ju
n
y,j)]−4tδγn

xy,0

γn+1
yy,0 = γn

yy,0 +4t[λ(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)+

(λ+ 2µ)(−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j)]−4tδγn

yy,0

(51)
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Figure 3 Regular mesh (861 nodes) Figure 4 Irregular mesh(IIC = 0.9072) Figure 5 Irregular mesh(IIC = 0.8312)

7 Numerical Results

7.1 GFDM with known boundary conditions

Let us solve the Eq. 1, inΩ = [0, 2]× [0, 1] ⊂ R2, with Dirichlet boundary conditions
Ux(0, y, t) = 0 ∀y ∈ [0, 1]

Ux(1, y, t) = sin 2 sin y cos(
√

2βt) ∀y ∈ [0, 1]
Ux(x, 0, t) = 0 ∀x ∈ [0, 1]

Ux(x, 1, t) = sin x sin 2 cos(
√

2βt) ∀x ∈ [0, 1]
Uy(0, y, t) = 0 ∀y ∈ [0, 1]

Uy(1, y, t) = cos 2 cos y cos(
√

2βt) ∀y ∈ [0, 1]
Uy(x, 0, t) = 0 ∀x ∈ [0, 1]

Uy(x, 1, t) = cosx cos 2 cos(
√

2βt) ∀x ∈ [0, 1]

(52)

and initial conditions

Ux(x, y, 0) = sinx sin y;Uy(x, y, 0) = cos x cos y;
∂Ux(x, y, 0)

∂t
= 0;

∂Uy(x, y, 0)

∂t
= 0

(53)
using a regular mesh (see Fig. 3 with 861 nodes) and irregular meshes (see Figs. 4 and 5) with
861 nodes. The analytical solutions (see Fig. 6) is

Ux(x, y, t) = cos(
√

2βt) sinx sin y; Uy(x, y, t) = cos(
√

2βt) cos x cos y (54)

The weighting function is given by Eq. 29 and the criterion for the selection of star nodes
is the quadrant criterion (see references[1, 4, 5]). The global error is evaluated for each time
increment, in the last time step considered, using the following formula

Global error =

√∑NT
j=1(sol(j)−exac(j))2

NT

|exacmax|
× 100 (55)

wheresol(j) is the GFDM solution at the nodej exac(j) is the exact value of the solution at the
nodej, exacmax is the maximum value of the exact solution in the cloud of nodes considered
andNT is the total number of nodes of the domain.
Table 1 shows the global error, with4t = 0.0005, for value ofα = 1 andβ = 0.5, in the
regular mesh (see Fig. 3) withn = 500.

Table 2 shows the values of the global error for several values of4t, using the irregular mesh
with 861 nodes (see Fig. 4), withn = 500 andIIC = 0.9072.
Table 3 shows the values of the global error for several values of4t, using the irregular mesh
with 861 nodes (see Fig. 5), withn = 500 andIIC = 0.8312.
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Table 1: The global errors withα = 1;β = 0.5

N of Nodes Global ErrorUx Global ErrorUy

861 0.0004222 0.0004712

Figure 6: Exact solutionUx without PML.

Table 2: Influence of the4t in the global error withα = 1;β = 0.5;n = 500; IIC = 0.9072

4t Global ErrorUx Global ErrorUy

0.005 0.004105 0.004326
0.001 0.0017170 0.001374
0.0005 0.000662 0.000669

Table 3: Influence of the4t in the global error withα = 1;β = 0.5;n = 500; IIC = 0.8312

4t Global ErrorUx Global ErrorUy

0.005 0.005234 0.005321
0.001 0.001983 0.002110
0.0005 0.000821 0.000840
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7.2 GFDM with PML

Let us solve the Eq. 1, inΩ = [0, 2]× [0, 1] ⊂ R2, with homogeneous the Dirichlet boundary
conditions and the initial conditions are given by Eq. 53, using the regular mesh with 861 nodes
(see Fig. 6) used in subsection 7.1, the analytical solutions is given by Eq. 54. The weighting
function is given by Eq. 28 and the criterion for the selection of star nodes is the quadrant
criterion.
Figure 8 shows the graphic the approximated solution ofux, after 100 time steps, with PML in
x-direction and y-direction for1.4 ≤ x ≤ 2 and0.6 ≤ y ≤ 1 (see Fig. 7).
Figure 10 shows the graphic the approximated solution ofux, after 100 time steps, with PML

Figure 7: Regular mesh with PML region. Figure 8: Approximated solutionUx with PML.

in x-direction and y-direction for≤ x ≤ 0.6 and0 ≤ y ≤ 0.2, 0.8 ≤ y ≤ 1 (see Fig. 9).

Figure 9: Regular mesh with PML region. Figure 10: Approximated solutionUx with PML.

8 Conclusions

This paper shows a scheme in generalized finite differences, for seismic wave propagation in
2-D. The von Neumann stability criterion has been expressed as a function of the coefficients
of the star equation and the velocity ratio.
The investigated star dispersion has been related with the irregularity of the star using the ir-
regularity indicator of the mesh. The use of irregular meshes, adjusted to the geometry of the
problem, may create high dispersion in certain stars which is related to high values of the irreg-
ularity index of the mesh (IIC). In this case the mesh can be redefined by an adaptive process
([2]) until a mesh whit suitable dispersion and irregularity index values is obtained.
The formulation of the PML is compatible with GFDM and numerical results confirm that PML
has an extraordinary performance in absorbing outgoing waves.
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