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Abstract. The interior of the Earth is heterogeneous with different material and may have com-
plex geometry. The free surface can also be uneven. Therefore, the use of a meshless method
with the possibility of using and irregular grid-point distribution can be interest for modelling

this kind of problem.

This paper shows the application of Generalized Finite Difference Method (GFDM) to the prob-
lem of seismic wave propagation in 2-D. To use this method in unbounded domains one must
truncate the computational grid-point avoiding reflection from the edges. Perfectly Matched
Layers (PML) absorbing boundary condition has then been included in the numerical model
proposed in this work.
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1 Introduction

During recent years, meshless methods have emerged as a class of effective numerical meth-
ods which are capable of avoiding the difficulties encountered in conventional computational
mesh based methods. Considerable research in computational mechanics has been devoted to
the development of meshless methods. In these methods, the domain of interest is discretized
by a scattered set of points.

An important path in the evolution of meshless methods has been the development of the Gen-
eralized Finite Difference Method (GFDM), also called Meshless Finite Difference Method
(MFDM). The bases of the GFD were published in the early seventies. The idea of using an
eight node star and weighting functions to obtain finite difference formulae for irregular meshes,
was first put forward by [9] using moving least squares (MLS) interpolation and an advanced
version of the GFDM was given by [12].1[1] reported that the solution of the generalized finite
difference method depends on the number of nodes in the cloud, the relative coordinates of the
nodes with respect to the star node, and on the weight function employed.

An h-adaptive method in GFDM is described|in [2], [4] ahd [5].

In this paper, this meshless method is applied to seismic wave propagation. The GFDM is a
robust numerical method applicable to structurally complex media. Due to its relative accuracy
and computational efficiency it is the dominant method in modeling earthquake motion [10]
and [11]. The perfectly matched layer (PML) absorbing boundary performs more efficiently
and more accurately than most traditional or differential equation-based absorbing boundaries
([6l, [7], [13] and [&]).

The paper is organized as follows. Section 1 is an introduction. Section 2 describes the GFDM
obtaining the explicit generalized differences schemes for the seismic waves propagation. In
Section 3 a stability condition is obtained. In Section 4 the grid dispersion relations is derived.
In Section 5 are analyzed the relations between irregularity of cloud of nodes, the step of time
and star-dispersion. In Section 6 an PML is defined in 2-D. In Section 7 some numerical results
are included. Finally, in Section 8 some conclusions are given.

2 Explicit Generalized Differences Schemes for the seismic waves propagation problem
for a perfectly elastic, homogeneous and isotropic medium
2.1 Equation of motion

The equations of motion for a perfectly elastic, homogeneous, isotropic medium in 2-D are

?Us(z,y.t) _ a282Ux(w,y,t) 22 (w VD 4 (0 52) Uy(z,y,1)

ot? 0x? 83:83/ 1)
*Uy(z,y,1) _ 52 Uy(z,y,t) Lo ,0?U, (a:,y,t) (@ ﬁ2) Uy, y,t)
ot? Ox? oy? 0xdy
with the initial conditions
Ux(l‘7 Y, O) = f1<l’, y)) Uy(l’, Y, 0) - fQ(xv y)
8U$($7y’ O) o . aUy(I7y70> .
WD) fyayy P20 ey ()

and the boundary condition

alUx(x(]?y(h ) b W :gl(t> T 3
8Uy(x0 Y0, t) _ en ( )
a2Uy(I0ay07 ) +b _QQ(t)
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wheref,(x,y), fo(z,v), f3(x,y), fa(z,y), g1(t) Y g2(t) are showed functions,

//\+2u

p is the density)\ andp are Lang elastic coefficients aridis the boundary of?.

2.2 A GFDM Explicit Scheme

The aim is to obtain explicit linear expressions for the approximation of partial derivatives
in the points of the domain. First of all, an irregular grid or cloud of points is generated in the
domain2 U I". On defining the central node with a set of nodes surrounding that node, the
star then refers to a group of established nodes in relation to a central node. Every node in the
domain has an associated star assigned to it.

This scheme uses the central-difference form for the time derivative

Uy (20, yo, n/\t) U%I — 2y + quol' 9?Uy (o, yo, nAL) up bt —2up o +

ot? (At)2 ’ ot2 B (At)2

(4)
Following [1], [2] and [4], the explicit difference formulae for the spatial derivatives are ob-
tained,

a2Ux (1307 Yo, TlAt) n al n aQU (xO? Yo, TLAt) n = n

92 — —mouxp + Z mjuxm Y B2 = —mouyp -+ Z mjuyd
j=1 Jj=1

02U, (z0, yo, nAt) " " 02U, (zo, yo, nA\t) " "

502 = —NoUyo + Z MUy ;5 Y o7 = Moy + Z 10Uy,
) j=1 Y 7j=1
02U, (zo, yo, nt) " N " 02U, (g, Yo, n/\t) " al "
deoy Wt Gy T T = et ) Gy )
j=1 Jj=1

whereN is the number of nodes in the star whose central node has the coordinates (in

this work N = 8 and the are selected by using the four quadrants critéfig.([

mo, 1o, (o are the coefficients that multiply the approximate values of the functivasdV at

the central node for the timeAt (ugy andv{ respectively) in the generalized finite difference
explicit expressions for the space derivatives.

m;,n;, (; are the coefficients that multiply the approximate values of the functibasid V/

at the rest of the star nodes for the timé&s¢ (v} andv} respectively) in the generalized finite
difference explicit expressions for the space derivatives.

The replacement in E{|] 1 of the explicit expressions obtained for the partial derivatives leads to
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, N N
UzBl = 2Uy o — “Z,Bl + (At)z[aZ(—mou;io + Z mjuy ;) + 52(_7701‘2,0 + Z NjUi ;)
1 1

N
+(a? — 3%)(—Couy o + Z Gty ;)]
N ! N
upht = 2upy — gt + (AR (—mougg + Y mup ) + o (=noul+ D myug;)
1 1

N
+Ha? = B (—Coulty + > Gun )]
(6)

3 Stability Criterion

For the stability analysis the first idea is to make a harmonic decomposition of the approxi-
mated solution at grid points and at a given time lex¢l Then we can write the finite difference
approximation in the nodes of the star at timeas

ug — AgneikTmO; u;z — AgneikT:cj; ,061 — BgneikTmO; U;»l — Bfneikij (7)

wherex, is the position vector of the central node of the sigr,j =1, --- , N are the position
vectors of the rest of the nodes in the star &gdare the relative position vectors of the nodes
in the star in respect to the central node whose coordinatés.are z;, — o, hj, = y; — yo.

¢ is the amplification factor whose value will determine the stability conditiors, the angular
frequency in the grid.

. __—itwit
33_7' :330+hj, 5—6

k (fig. 1) is the column vector of the wave numbers

{3}
k, sin

Then we can write the stability condition ggj|| < 1.

>
o | @ o |o K
Nodo T
e hj
® J @ P
@-
Nodo ® i { J ¢
central
Figure 1: Irregular star (9 nodes) The wavenumber
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Including[7 intd §, cancelation @f'c™" =, leads to

A N o N o
AE= 24 — ¢+ (DIP[0* (= Amg + A D e ) P (= Ao + A D e )
1 1

N
(042 . ﬂ2)(_BCO + BcheikThj)]
1

N N
B . )
Be=25- 3 + (At)*[#*(~Bmo + B E m;e™® i) 4 a*(— B + B E nyet hi) 4
1 1

N
(a® = ) (~AG + AN ¢e* )] (8)

where
N N N
mozzmg‘; 77022773‘; COZZC]‘ (9)
1 1 1
Including[9 intd 8, the system of equations is obtained

N N
AlE =2+ ¢+ (A0 o my(1 = W) 4 (AP D (1= )

1 1
N

+ B(A ? = ) D G(1— e h) =0
N 1 N

A(DD*(@® = B°) Y G(1—e* M) + Bl -2+ % +(A0262 Y (1 — )
1 1

N
+ (A2 (1 —e* ) =0 (10)

1

B can be obtained from the second equation and included into the first, then operating with the
real and imaginary parts of conditions obtained, and canceling with conservative criteria, the
condition for stability of star is obtained.

4
At < - (11)
(@ + B2)[(Imol + [mo]) + v/ (mo +n0)* + G5
4 Star dispersion
4.1 Star-dispersion relations for the P and S waves
The real part of the condition obtained from Eq] 10 leads to
_ L o (12)
w = At arccos
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where
@—1—<At>2((a2+52)(a 4 2 | 52)2 2
= 1 1+ as) + (o™ + %) (a1 + a3)™+
1
A[(a® = 57)*(a3 — ag) + (aPas + Pas) (a2 + o’as) — (Par + Faz) (a1 + a’az)]) 2)
(13)
with
N 9a N
a; = ij(l —cosk”hj) = a_kl =a1 = ijdsin kd
1 1
N 9 N
as = lemj sink”h; = a—]j =agy = zljmjdcos kd
N 9 N
3 .
as = an(l —cosk”h;) = A ;njdsm kd
8(14
an sin kT h; = E Qg = andcoskd
Z( (1 —cosk”h;) = 8a5_a —ngsmkd
’ ok — " 7
9 N
E:@smk h; :’a; k::Z:gdamkd (14)
and
k"h; = k(hj, cosp + hj,sing) = kd
Is known that 4
Cgmd
w =2 (15)

wherec@ and \9"# are the phase velocity{"*¢ or 397'%) and the wavelength\{;* or X%
in the star respectively.
Defining the relations:

2
§=— (16)
XF (2 4 Dl(mol + o)) + /(o + 0% + G
Sp = ' 2 (17)
X542+ 1)[(Jmol + Inol) + /o + 107 + @)
BB il + )+ Vom0 + G a9
TZ% (19)
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S

Sp = (20)

Substituting Eqd. 12, 1F, 18 ahd| 20 into Eq| 15, the star-dispersion relations for P and S waves
are obtained:

<

QIrid __ arccos ) (21)

« 2mwsp

poridarccos ® (22)
B 2msp

4.2 Star-dispersion for group velocity

By definition the group velocity is the derivative of(see Ed.I2) with respect tg thus

, ow At [T
Ygrour = Gy, 4 \/1— 2 @3

where

1
T = (7’2 + 1)(&1,k + (137k) + 5[2(7“2 + 1)2(a1 + ag)(al,k + (I37k)+

412(r* — 1)*(asasx — agasr) + (ragy + asr)(as + r’ag)+
(7”2@2 + a4)(a2,k + 7’20/47]6) — (7’2a1,k -+ CL3,]€>(CL1 + T‘2CL3)—
(7‘2@1 + as)(arx + r2a37k)]} X [(r2 + 1)2(a1 + a3)2+
1
4[(7"2 — 1)2(a§ — a%) + (7’2@2 + ayq)(as + r2a4) — (7’2@1 + asz)(a; + rzag)]r? (24)

Defining
F=(?+1)(a; +a3) + [(r* + 1) (ay + az)*+

1
4[(7’2 — 1)2(a§ - ag) + (7“2@2 + ay)(az + 7“2@4) - (7”2@1 + az)(a1 + 7’2G3)H§] (25)

and substituting Eq$. 1.8 ahd|25 into Eq] 23, the star-dispersion for waves P and S are

gy 1 Y
« T L, = ; (26)
V2 D) [(mol + mo]) + /(o + 102 + G)v/2
Barowp 1 Y
B 22 P pF 2 (@7)
V2 D) [(mol + mo]) + +/Tmo + 102 + G)v/2
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5 Irregularity of the star ( /1.5) and dispersion

In this section we are going to define the index of irregularity of a star (IIS) and also the
index of irregularity of a cloud of nodes (IIC).
The coefficientsn, 1y, (, are functions of: a) the number of nodes in the star, b) the coordinates
of each star node referred to the central node of the star and c) the weighting function (see
referencegl,4]). If the number of nodes by star is fixed, in this case\d £ 8), and the
weighting function

1
w(hjm hjy) = (28)
(/1o + h5y)°
the expression
1
(29)

V2 4+ Dl(Imo| + Inol) + v/Tmo + 0% + G

is function of the coordinates of each node of star referred to its central node.

The coefficientsn , are functions of,——.
0, 705 Go ;m

Denotingr; a the average of the distances between of the nodes of theastaits central node
and denoting the average of the values in the stars of the mesh, then

T

Mo = moT2; o =0t (o = CoT? (32)
The stability criterion can be rewritten

At < 2 (32)

BTTF T (5l + ) + (7 + 0+ &
For the regular mesh case, the inequality 32 is

T 2(V2-1)V3

ANt < 33
ENGES U &9

Multiplying the right-hand side of inequalify B5 by the factor
VH(vV2+1) (34)

\/3<!m—o| + 0+ /(75 + )2 + &)

the inequality 3P is obtained.
For each one of the stars of the cloud of nodes, we define the IIS for a star with central node in

(0, 40) as Eq[ 3¢
VBH(V2+ 1)

I]S(xo,yo) =
-—2
/3l + i+ o + e+ G

(35)

8
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that takes the value of one in the case of a regular mesh and/S < 1

If the index /1S decreases, then absolute values®fg, (, increases and then according with
[33, At decreases and star dispersion increases ($€e|21)22, 26 and 27).

The irregularity index of a cloud of nodes (1IC) is defined as the minimum of all the IIS of the

stars of a cloud of nodes
IIC =min{l1Sy, . /z=1,--- ,NT} (36)

whereNT is the total number of nodes of the domain.

6 Recursive Equations
6.1 Recursive equations with PML in x-direction.

For computational convenience, we split the second order equations of njgtion (1) into five
coupled first order equations by introducing the new field variablesy,., v,

( anx(x,y,t) _ Ve (2,9, 1) N OVay (T, y, 1)
ot ox oy
3Uy(:c,y,t) — afymy(xayﬂf) + a’Yyy(%fUat)
P "o Er y
Mea(1,9,1) aUx(:v,y,t) <9U y(2,9,1)
CCA S KA T 37
ot (A 2p) ox dy (37)
Ooy(,y,t) _ OVl yt) | OUy(2,y,t)
ot By A
a’}/yy(l’,y,t) aU (.I‘ y7 ) 8U (I y7 )
T o TOFI—

We shall make two simplifications, we shall assume that the space far from the region of interest
is homogeneous, linear and time invariant. Then, under these assumptions, the radiating solution
in infinite space must be (superposition of plane waves):

w(x,t) = Wz, t)e e (38)

As w is an analytic function ofz,then we can analytically continue it, evaluating the solution
at complex values of. Then, the solution is not changed in the region of interest and the
reflections are avoided.

—twt

Un(, 9, 1) = e (2, y)e ™" = Uy (w,y,t) = —iwug (2, y)e"™" = —iwl, (z,y, 1)

Uy(z,y,t) = uy(z,y)e” ™t = Uy (x,y,t) = —iwuy,(z,y)e” "™t = —iwl,(z,y,t)

Vou (T, Y, t) = Lz (z,y)e” wt = Yoa (T, y,t) = _iwrwr(xay)e_th = _Zw'ylan(x y,t) (39)
Yoy (@, Y, t) = Doy (z,y)e 7%“”5 = Yay (2,9, 1) = —iwlyy(z,y)e ™" = —iwyay(z,y,1)

Yy (2,9, 1) = Ty (@, 9)e ™" = Yy (2,9, 1) = —iwly, (z,y)e """ = —iwyy,(z,y,t)

Thus, we have a complex coordinate

—iwt

T=x+if (40)
As this complex coordinate is inconvenient, we have a change variables in this region (PML)
df
¥ =(1+i— 41
0T = (1+ de)a (41)



F. Urena, J.J. Benito, E. Salete and L. Gavete

In order to have an attenuation rate in the PML independent of frequefcwé have

A bu(a)

dx w

(42)

wherew is the angular frequency aid is some function of.
PML x-dir can be conceptually assumed up by a single transformation of the original equation.
Then wherever an x derivative appears in the wave equations, it is replaced in the form

0 1 0
N 43

or 1+ i) O (43)

The equations are fecuency-dependent, and to advoid it a solution is to use an auxiliary differ-
ential equation (ADE) approach in the implementation of PML. The following equations are
obtained

8Um(o:,y,t) _ 1 anm(zyyvt) aVTy( )
Uy (w,y,t) 1 0vay(x,y,t) | Ovyy ( )
o = I T s w,,0) = 0.Uy (2, )
aww ) 7t an ’ 7t 8U bl 7t
et ) — (o 2y 2 T)  ZOMEID) ) = G0,
a x 9 7t aUCE 9 7t aU 9 7t
2k y(ai Y ) =M ((;ny ) +/~L y(axxy ) +w4($7yat) _(Sz'yxy(xvyat)
! Y (44)
1(z,y,1) 0z OYay(®,y,1)
ot op Ay
8¢2($,y,t) _ %871/@/(3351/775)
ot o dy
81/}3(x5y7t) _)\6 aU (:E Y, )
ot N y
3?/14(35,21,15) o aUz(xayvt)
T —
8¢5( x,Y, ) aU( z,Y, )
— a0 - = (A+2u)d, oy
Where the five last equatiops|46 are ADE approach and the new field variables
( 1 (5 Vay(x, 7y, 1)
t 2o
%(%y, ) p W ay
1,02 0y (2, 9,1)
t — vy )
¢2(x7y7 ) p W @y
0y OUy (2, y, 1)
== 45
V3(w,y,t) Y (45)
0, OU,(2,y,)
t) = ip———2 2
Ya(,y,t) ww o
0, OUy (@, y, 1)
=i\ +2p)2—r
| ¢5(l‘7y7 ) l( + )w 8y

10
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6.1.1 An scheme in GDFM for elastic part

Following [1], [2] and [4], the explicit difference formulae for the spatial derivatives of a
function are obtained,

N N
oU (o, yo, nAt) n " OU, (o, yo, nAt) . n
ox - —ml,oux,o+z ma, sy, js dy B _m270“x70+z Ma,jUa,j

j=1 J=1

(46)
and similarly for first spatial derivatives of the functionSy,, V.., Yay, Vyy, Y1, Y2, U3, V4, V5
Substituting Eq|. 46 into Eq. 87 the an scheme in GFDM for elastic part are obtained

( At al N
uiht =l + 7[—m1,07§x,o + Z M Yawj — M2,0Vay0 T Z M2 Voy 5]
At X .
Uyt = o + 7[—7”1707?%0 DY M0 T D MYy ]
Jj=1 N j=1
72;3 = Yoro T DA+ 20) (=my puly o + Z myjuy ;)
N a
+A(—maouy o + Z My juy ;)]
=1 N (47)
'7;;5 = Yoo T N[u(—mz,ouﬁ,o + Z mg,ju;ﬁj)
N g
+p(—maoug o + Z my gty ;)]
Jj=1 N
Voo = Voo + DN =mgull g + Y my jul )
N o
+(A 4 2) (—mgouy o + Z Mo ity ;)]
L j=1

11
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6.1.2 Anscheme in GDFM for PML part

Substituting Eq[ 46 into Eq. 44 the an scheme in GFDM for PML part are obtained

(

At al
UZF = Uy + 7[_m1,07§x,0 + Z M Yo —
N =
mM2,0Yzy0 + Z Mo Yoy i) T DT — Szl o]
j=1
N
UZ,J(Sl = Uy + %[—mlmﬁy,o + Z M Yoy~
N =
mQ,OF}/@ZLy,O + Z mQ»jﬂy;yJ] + At[w;o - 6Iu2,0]
i=1 .
Vodo = Voo T A+ 20) (= maull g + > majul )+
N a
A(=maouy o + Z ma juy )]+ Ats o — 0V o]
i=1 .
Yoy = Vo + Dtlu(—maoul o + Z ma juy )+
N o
p(=magul o+ Y magun )+ At — 677, o] (48)
=1 .
’Y;Zf& = Vyyo T At[M_ml,Ougo + Z ijUﬁ,j)Jr
N o
(A+ 2u)(—m270u;‘70 + Z m2,juZ,j>] + At[wg,o - 517;2,,0]
j=1
N
igl = wﬁo + %590[_”?2,07%,0 + Z m27j73y,j]
j=1
N
g,gl = wg,o + %590[_7”2,07;3;,0 + Z m2,j7§y,j]
j;1
:?,gl = wg,o + )‘Awﬂc[_mzouz,o + Z mQJUZ,j]
j?
Zgl = Mf,o + MAt(Sx[_mZOUZ,O + Z mQJU;cL,j]
e
=000 (A 20) AL, [—maguly + Y majul ]
=1

12
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6.2 Recursive equations with PML in x-direction and y-direction.

In this case 5 5 5
o8 (49)
oy T
We obtain
g (,y,t) 1 0Vaa(@,y,t) | OVay(2,y,t),
oUy(w,y,t) 1 0vay(m,y,t)  Ovyy(z,y,t)
Neaa(T,y,1) _ OU,(z,y,1) ( ) .
3Txy(~’13,y7t) _ OU,(z,y,1) 8Uy(x,y, )
N = oy +u o - 57;63; (xv Y, t)
Oyy(,y,t) U, (z,y, ) U, (x,y,1)
5t =\ 5 + (AN +2u )7831 — 0yyy (2,9, t)

6.2.1 An scheme in GDFM for elastic part
The equations of the elastic part is given by Ed. 47

6.2.2 An scheme in GDFM for PML part
Substituting Eq|. 46 into Eq. 50 the an scheme in GFDM for PML part are obtained

( N

uypt =gy + Apt[ M0V 0 + DM Ve~
N =
mM2,0Vay.0 T Z M Yy i1 — Dtous o
j=1
“Zgl = Uy o+ %[—WLO’Y&,O + Z M Yoy i~
N =
mM2,0%yy.0 + Z M2 jVyy. i) — Dtouy o
i=1 .
Vo = Vo + AN+ 2p) (—maoull g + Y ma jull )+
N o (51)
A(=maz ouy o + Z My Uy )] — Dtz 0
=1 .
’Y;L;é = Yay.o T Dtlp(—maouy o + Z ma, iy ;)+
N =
u(—m170u3’0 + Zml,juz’j)} — Aty 0
i=1 .
7;;3 = Y0 T DA(=ma ouf o + Z my g )+
N =
A+ 20) (—ma.ull g + > majuy ;)] — Atoyy,
\ J=1

13
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Figure 3 Regular mesh (861 nodes) Figure 4 Irregular midsgh(= 0.9072) Figure 5 Irregular mesii(C = 0.8312)

7 Numerical Results
7.1 GFDM with known boundary conditions
Let us solve the Eq.|1, it = [0,2] x [0, 1] € R?, with Dirichlet boundary conditions

(

U,(1,y,t) = sin2siny cos(v/26t) Vy € [0,1]
Uy(x,0,t) =0 Vz € [0,1]

| U.(z,1,t) = sinzsin2cos(v26t) Vr €[0,1]

( Uy(oayv t) = O \V/y € [07 1]
U,(1,y,t) = cos2cosycos(v/26t) Yy € [0,1] (52)
Uy(z,0,t) =0 Vo € [0, 1]

| U,(z,1,t) = coswcos2cos(v/26t) Va €[0,1]

and initial conditions
Uy(x,y,0) =sinzsiny; Uy(x,y,0) = cos x cos y; U(z,9,0) = 0; oy(@,y,0) =0

ot ot

(53)
using a regular mesh (see Fig. 3 with 861 nodes) and irregular meshes (see Figs. 4 and 5) with
861 nodes. The analytical solutions (see Fig. 6) is

U,(x,y,t) = cos(vV26t)sinzsiny; U, (x,y,t) = cos(V20t) cos x cos y (54)

The weighting function is given by Eq. P9 and the criterion for the selection of star nodes
is the quadrant criterion (see referen¢est, 5]). The global error is evaluated for each time
increment, in the last time step considered, using the following formula

\/ N (sol(j) —ezac(j))?
Global error = NT x 100 (55)

lexaca.

wheresol(j) is the GFDM solution at the nodeczac(j) is the exact value of the solution at the
nodej, exac,,q, is the maximum value of the exact solution in the cloud of nodes considered
andNT is the total number of nodes of the domain.
Table 1 shows the global error, witht = 0.0005, for value ofa = 1 and = 0.5, in the
regular mesh (see Fig. 3) with= 500.

Table 2 shows the values of the global error for several valuéstplising the irregular mesh
with 861 nodes (see Fig. 4), with= 500 and//C' = 0.9072.
Table 3 shows the values of the global error for several valuestptising the irregular mesh
with 861 nodes (see Fig. 5), with= 500 and//C' = 0.8312.
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Table 1: The global errors with = 1; 5 = 0.5

N of Nodes

Global ErrorU,

Global Errot/,

861

0.0004222

0.0004712

Figure 6: Exact solutiof/, without PML.

Table 2: Influence of thé\t in the global error withe = 1; 5 = 0.5;n = 500; I1C = 0.9072

At | Global ErrorU, | Global ErrorU,
0.005 0.004105 0.004326
0.001 0.0017170 0.001374

0.0005|  0.000662 0.000669

Table 3: Influence of thé\t in the global error withe = 1; 5 = 0.5;n = 500; [1C = 0.8312

At | Global ErrorU, | Global ErrorU,
0.005 0.005234 0.005321
0.001 0.001983 0.002110

0.0005|  0.000821 0.000840
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7.2 GFDM with PML

Let us solve the ECD 1, = [0,2] x [0,1] € R?, with homogeneous the Dirichlet boundary
conditions and the initial conditions are given by Eq. 53, using the regular mesh with 861 nodes
(see Fig. 6) used in subsection 7.1, the analytical solutions is given Hy Eq. 54. The weighting
function is given by Eq.[ 28 and the criterion for the selection of star nodes is the quadrant
criterion.

Figure 8 shows the graphic the approximated solution,offter 100 time steps, with PML in
x-direction and y-direction fot.4 < x < 2 and0.6 <y < 1 (see Fig. 7).
Figure 10 shows the graphic the approximated solutiom,pffter 100 time steps, with PML

+ \S + + * * * +
02 04 0 04 1 18 H

Figure 7: Regular mesh with PML region. Figure 8: Approximated solutipwith PML.

in x-direction and y-direction foK = < 0.6 and0 <y < 0.2, 0.8 <y < 1 (see Fig. 9).

+ A
04 ]

Figure 9: Regular mesh with PML region. Figure 10: Approximated solutipwith PML.

8 Conclusions

This paper shows a scheme in generalized finite differences, for seismic wave propagation in
2-D. The von Neumann stability criterion has been expressed as a function of the coefficients
of the star equation and the velocity ratio.

The investigated star dispersion has been related with the irregularity of the star using the ir-
regularity indicator of the mesh. The use of irregular meshes, adjusted to the geometry of the
problem, may create high dispersion in certain stars which is related to high values of the irreg-
ularity index of the mesh (lIC). In this case the mesh can be redefined by an adaptive process
([2]) until a mesh whit suitable dispersion and irregularity index values is obtained.

The formulation of the PML is compatible with GFDM and numerical results confirm that PML
has an extraordinary performance in absorbing outgoing waves.
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