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Abstract:  The  coupling  between  parametric  and  external  resonances in  inclined  cables  
subjected to a motion of an anchorage with components both along and perpendicular to  
their axis is investigated. Besides posing theoretical challenges, this problem is of practical  
interest for inclined cables of cable-stayed bridges and guyed towers. First, the state of the  
art  on  the  subject  of  multi-modal  interactions  of  cables  with  moving  anchorages  is  
summarized. Then, the proposed analytical model is presented, which is selected to be as  
simple as possible, but still suitable for capturing the coupling between the first and second  
eigenmodes, hence between parametric and external resonances. Next, two specific cases of  
the general model, in which no coupling appears, are studied in order to identify the intrinsic  
characteristics  of  external  and  parametric  resonance,  respectively.  Finally,  the  coupling  
between  the  two  instabilities  is  investigated,  aiming  at  a  better  understanding  of  the  
interaction phenomenon and at formulating practical engineering guidelines.
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1   STATE-OF-ART ON MULTI-MODAL VIBRATIONS OF CABLES
In cable stayed bridges or guyed towers, indirect excitation through the vibrations of the 

neighboring  structural  elements,  the  bridge  deck  and  the  tower  respectively,  can  lead  to 
oscillations  with  high  amplitudes  in  case  resonance  takes  place.  This  resonance  may  be 
external, parametric or a combination of both. External resonance is induced by a motion of 
the anchorage perpendicular to the cable axis and occurs when the exciting frequency is equal 
to any eigenfrequency of the cable. Parametric resonance describes the dynamic instability 
which is induced by a motion of the anchorage along the axis of the cable and is observed 
when the ratio between the exciting frequency and some eigenfrequency takes specific values 
like 2:1, 3:1, 1:2 or 1:3. 

The phenomenon of external resonance is well known among bridge designers and many 
design guidelines of cable stayed bridges provide a description of it and propose measures to 
prevent its effects [1, 2]. Most current models are linear [1, 2], but models including cubic 
non-linearities exist, like Irvine's solution for undamped motion (chapter 3.4 of [3]) or that of 
Caetano including damping [4]. The phenomenon of parametric resonance has entered the 
structural engineers'  culture more recently with the development of the new generation of 
cable stayed bridges [5], it is hence detailed in [2] but only mentioned in [1]. It has been 
described first by Kovacs [6]. Then, Uhrig [7] proposed the first expressions of the main 
instability zones for the excitation frequencies  in which the response diverges.  Lilien and 
Pinto da Costa  [8],  in  parallel  with Cai  and Chen [9],  established the  first  values  of  the 
amplitude of the non-linear response in the main instability zone, the so-called two to one 
(2:1) resonance. These results were confirmed by Clément and Crémona using the harmonic 
balance method [10] and by Berlioz and Lamarque using the multiple scales method [11]. 
Takahashi [12] has shown that there were many instability zones around the multiples of the 
cable eigenfrequencies but also in the neighborhood of combinations of those, the so-called 
combination resonances.

The interaction between external and parametric resonance has been studied using different 
approximations depending on the sag of the cable, as outlined in Rega's bibliographical report 
[13]. A detailed literature review for coupled external-parametric resonances for taut strings 
can be found in Nayfeh and Mook [14]. The first studies of modal interaction in sagged cables 
concern internal  resonances [15] or the coupled response to distributed load [16,  17, 18]. 
Luongo et al. have shown that, when the sag is significant, quadratic non-linearities govern 
the response while cubic non-linearities dominate when the sag is small [15, 19]. For instance, 
the  publications  on  uncoupled  parametric  resonance  cited  above  [6,  12,  7,  8,  9,  10,  11] 
concern only small sagged cables and include only cubic non-linearities.

A two degrees of freedom model for in-plane external resonance / out-of-plane parametric 
resonance interaction of large sagged cables was proposed by Perkins [20]. He observed that, 
like for taut strings,  for small  exciting amplitudes  the system is  uncoupled but,  when the 
amplitude  exceeds  a  certain  value,  parametric  resonance  occurs  and the  system becomes 
coupled. Gonzalez-Buelga et al. extended this model by taking into account the second out-
of-plane mode in the response, but they limited themselves to small sagged cables [21]. Two 
mode planar interaction was also studied by Chatjigeorgiou and Mavrakos in a marine context 
[22], including small bending stiffness and quadratic damping due to fluid drag forces. A four 
degrees of freedom model for a large sagged cable was studied by Benedettini and Rega [23]. 
Zhang and Tang investigated also multi-modal interaction, focusing on the bifurcation type 
and on the response to chaotic excitation [24]. Multi-modal interaction was also studied by 
Srinil  and  Rega  who  compared  finite  differences  numerical  results  with  multiple  scales 
analytical  results (with up to 15 modes),  in order to check if  simulations  can capture the 
richness  of  the  cable's  behavior  near  the  first  cross-over  region  undergoing  1:1  or  2:1 
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resonance [25]. Srinil and Rega also investigated the accuracy of reduced order models for the 
modeling of 2:1 resonance in horizontal and inclined cables. They showed that “the minimal 
(two-degrees-of-freedom)  model”  involving  only  the  resonant  modes  seems  capable  of 
providing reliable results only for very low-sagged cables [26].

Advanced multi-modal models are thus nowadays available for researchers studying the 
dynamic interaction of sagged cables excited parametrically.  These models try to take into 
account the whole complexity of the problem (generally in a relatively theoretical manner), 
the problem of coupled external/parametric resonance of small sagged cables being treated as 
a simple specific case. There is, however, need for a coupled model of small sagged cables for 
structural  design  of  stay  cables  in  engineering  practice,  in  order  to  identify  clearly  the 
instability regions and the amplitude of responses. Gonzalez-Buelga et al. made a first step in 
this direction using the multiple scales method for out-of-plane parametric resonance [21]. For 
small sag however, the frequencies of in-plane and out-of-plane symmetric modes are very 
close, so that there might be internal resonance. It is thus proposed here to study the relative 
influence of in-plane and out-of-plane parametric resonance and its coupling with in-plane 
external  resonance.  In section 2 an analytical  model  is  developed based on the  harmonic 
balance method and compared with finite element numerical results. Uncoupled external and 
parametric  resonances are studied in the third and fourth section,  respectively,  in order to 
identify  their  characteristics.  The  fifth  section  is  dedicated  to  the  study  of  the  coupled 
problem. 

2   DEVELOPMENT OF THE ANALYTICAL MODEL

2.1   Presentation of the problem
The analytical model presented here is dedicated to the study of multi-modal non-linear 

vibrations of inclined cables subjected to coupled external/parametric resonance. One end of 
the cable is  fixed while the other end is  subjected to an imposed motion (figure 1). This 
situation could correspond to a cable of a cable stayed bridge with the upper end fixed on a 
stiff pylon and the lower end supporting a flexible deck. The imposed motion of the lower end 
could be due to wind or traffic induced vibration of the deck. The cable is assumed to have 
small sag, which is a realistic assumption for bridge cables. 

Figure 1: Inclined cable submitted to harmonic excitation at one end.

The plane of the cable is described by coordinates X, along the line joining the two ends of 
the cable and Y, perpendicular to this line, with the origin located at the fixed end. The out-of-
plane coordinates are represented by Z. The inclination of the cable axis with respect to the 
virtual line of the deck (which is here supposed to be horizontal) is denoted by the angle θ. 
Without loss of generality, the imposed motion is supposed to be vertical and harmonic with 
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amplitude Δ and frequency Ω, called respectively exciting amplitude and exciting frequency. 
All other forces except gravity are neglected. As noted above, it is further assumed that the 
sag of the cable is small, so that the difference between the abscissa along the cable and the 
abscissa along the chord can be neglected. Another consequence of the small sag is that the 
static  equilibrium shape  of  the  cable,  which  is  in  reality  a  catenary,  can  be  assumed  as 
parabolic [5].

2.2 Derivation of equations of motion
For  common  stay  cables,  axial  displacements  are  much  smaller  than  transverse 

displacements, so that here only displacements in the  Y and  Z directions will be considered 
and denoted as  V(X,t) and  W(X,t), respectively.  The equations of motion being non-linear, 
their  solutions  are  generally  derived  using  Galerkin's  method  [20,  23,  10,  24,  11,  21]. 
Considering previous investigations by Gonzalvez Buena et al. [21] and the targeted field of 
application (small sagged stay cables), the present study is limited to the first out-of-plane 
mode, the first in-plane mode and the second in-plane mode. The approximate displacements 
are thus expressed as:
v  x , t = p1t sin π x p2t  sin 2 π x δ cos Ω t x cos θ         (1a)

w x ,t =q1t sin π x        (1b)

where p1 and p2 are time functions corresponding to the first and second in-plane mode, and 
q1 that  of  the  first  out-of-plane  mode.  Note  that  in  the  previous  expressions,  the  various 
parameters have been expressed in a dimensionless form with respect to the length of the 
cable:

x= X
L

, δ= Δ
L

, v=V  X , t 
L

and w=
W X ,t 

L          (2)

Considering the small sag of the cable, the eigenfrequencies are obtained following the 
approximation proposed by Gonzalvez Buena et al. [21] and are given by:

ωi
in = π i

L  T
ρ 1 2 λ2

i4 π 4 [1−1i1 ]2 , ω j
out = π j

L T
ρ         (3)

where T is the tension in the cable (which is assumed constant along the length),  ρ its mass 
per  unit  length  and λ the so-called  Irvine's  parameter,  which is  generally  smaller  than 1, 
except for very large cable stayed bridges; it is given in terms of the elastic modulus E of the 
cable, its cross-sectional area S and the gravity acceleration g: 

λ2 = E S
T

⋅ ρ L g cos θ
T 

2

        (4)

Following then the procedure proposed by Luongo et al. [15], the quadratic terms in the 
equations of motion are neglected. Looking at the remaining equations, one observes that the 
roles played by the first in-plane mode p1 and by the first out-of-plane mode q1 are identical. 
Moreover, previous experiments on taut cables have shown that only one of the two modes 
has a nonzero amplitude [11, 20, 21] (in general only the out-of-plane mode occurs). So, for 
simplicity reasons, only one of the two modes will be considered. The equations of motion 
reduce hence to: 
p̈12 ξ ω1 ṗ1ω1

212 a cos Ω t  p 1c3 p1 p1
24 p2

2 = 0         (5a)

p̈2ξ ω2 ṗ2ω2
212 a cos Ω t  p24 c3 p 2 p1

24 p 2
2 = F 2 t         (5b)
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where ω1 denotes, indifferently, the frequency of the first out-of-plane mode ω1
out or that of 

the first in-plane mode ω1
in. ξ is the modal damping ratio of the first out-of-plane mode which 

is assumed identical to that of the first in-plane mode and equal to twice that of the second 
mode. The dimensionless amplitude  a of parametric excitation, the coefficient of the cubic 
terms c3 and that of external excitation in-plane F2 are given respectively by:

a = E S
2T

δ sin θ , c3 = π 2

4
E S
T

ω1
2  and F 2t =−

δ cos θ Ω 2

π
cos Ω t         (6)

2.3 Method of harmonic balance
In equations (5a) and (5b), the coupling is limited to the non-linear terms. For this reason, 

the coupling will have an influence only near resonance conditions. Previous research [20, 23, 
27]  has  indeed  shown  that  the  instability  regions  were  only  marginally  affected  by  the 
coupling. Thus, the exciting frequencies, which might cause instability of the cable, are:

− Ω ≈ 2 ω1 for the first  in-plane or out-of-plane mode (parametric resonance);
− Ω ≈ ω2 for the second in-plane mode (external resonance).

As, for small sagged cables, these three frequencies are close to each other, interactions 
between parametric resonance in-plane or out-of-plane and external resonance in-plane might 
appear. The present study will thus be limited to a frequency region in the vicinity of the 
frequency  of  the  second  in-plane  mode.  In  this  region,  it  can  be  assumed  that  the  time 
functions p1 and p2 are of the following form [10]:
p1t  = p11sin Ω t /2 p12 cos Ω t /2         (7a)

p2t  = p 21sin Ω t p22cosΩ t         (7b)

where p11, p12, p21, and p22 are real numbers, which will be determined later.
Introducing these terms  into (5a)  and (5b)  and using  the  method of  harmonic  balance 

(which allows us to neglect the terms of high frequencies), leads finally to a system of four 
equations with four unknowns (p11,  p12,  p21 and  p22). This system can be separated into two 
matrix equations, which are characteristic of the coupled problem of inclined cables submitted 
to a harmonic motion at one end:

[ 3
4

c3 A22c3 B2ω1
2aω1

2−Ω2

4
−ξ ω1 Ω

ξ ω1 Ω 3
4

c3 A22c3 B2−ω1
2aω1

2−Ω 2

4
]⋅[ p11

p12] = [0
0]         (8a)

[2 c3 A212 c3 B 2ω2
2−Ω 2 −ξ ω2Ω

ξ ω2 Ω 2 c3 A212 c3B 2ω2
2−Ω 2]⋅[ p 21

p 22] = [ 0
−δ cos θ Ω 2/π ]        (8b)

where A2=p2
11+p2

12 and B2=p2
21+p2

22.

3   UNCOUPLED EXTERNAL RESONANCE 

3.1   Characteristic equation of uncoupled external resonance
Before studying the coupled system, the problems of external resonance and parametric 

resonance are treated separately, in order to understand better their characteristics. The study 
of external resonance is generally concerned with the response to an excitation according to 
the first mode of vibration, while here focus will be on the second in-plane mode of vibration,  
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which is susceptible to interact with parametric resonance terms when coupling is considered. 
Thus,  considering  a  horizontal  cable  subjected  to  a  vertical  excitation  at  one  end,  the 
amplitude of the first mode vanishes in expression (8b) (A = 0) and one obtains the following 
system of equations, which is characteristic of the uncoupled external resonance:

[12c3 B2ω2
2−Ω 2 −ξ ω2Ω

ξ ω2 Ω 12 c3 B 2ω2
2−Ω2]⋅[ p21

p22] = [ 0
−δ cos θ Ω 2/π ]          (9)

To  solve  the  above  equation,  it  is  necessary  to  check  under  what  conditions  the 
determinant of the matrix is different from zero:
144 c3

2 B424 c3ω2
2−Ω 2B2ω2

2−Ω22ξ 2ω2
2 Ω 2 = 0          (10)

This is a bi-quadratic equation which has real solutions if and only if its discriminant is 
positive.  As  it  is  always  negative,  the  matrix  in  (9)  can  be  inverted  and  a  third  degree 
polynomial equation linking the square amplitude of the response B2 with the amplitude of the 
excitation δ is obtained:

144 c3
2 B624 c3 ω2

2−Ω 2 B4[ω 2
2−Ω 22ξ 2 ω 2

2 Ω2] B2−δ2 cos2θ Ω 4

π 2 = 0          (11)

The real roots of (11) can be calculated with the method of Cardan. Depending on the 
value of the parameters, equation (11) might have one or three real roots, out of which only 
two are stable amplitudes of response.

3.2   Characteristics of the hysteresis region
The  interval  of  exciting  amplitudes  for  which  two  stable  amplitudes  exist  is  called 

hysteresis region, because of the role played by the state of the cable at the preceding time in 
the  determination  of  the  actual  amplitude.  The  limits  of  the  hysteresis  region  can  be 
determined from the characteristic equation of external resonance (11), which can be rewritten 
in a more concise manner:

k 1 Y 3k 2Y 2k3 Y k 4 = 0           (12)

where:

k 1 = 144 c3
2 , k 2 = 24 c3ω2

2−Ω2 , k 3 = ω2
2−Ω22ξ 2ω2

2 Ω2  and k 4 =−δ 2cos2 θ Ω4/π2  (13)

Equation (12) has three real solutions if and only if its discriminant is positive. The borders 
of the hysteresis region are thus given by the parameters which nullify this discriminant. After 
some standard algebraic manipulations, one finally finds the expressions of the two critical 
exciting amplitudes, which limit the hysteresis region: 

δ1 =
π

cosθ Ω 2  1
27

k 2[2 k 2

k 1 
2

−9
k3

k1 ]− k1

2 [ 2
9 k 2

k 1 
2

−
2k 3

3k1 ]
3
2

         (14a)

δ 2 =
π

cosθ Ω 2  1
27

k 2[2 k2

k1 
2

−9
k 3

k 1 ] k 1

 2 [ 2
9  k 2

k1 
2

−
2 k 3

3 k 1 ]
3
2

         (14b)

The  critical  frequency  Ωcr  for  which  more  than  one  solutions  exist,  is  given  by  the 
intersection of the two curves resulting from (14a) and (14b). This frequency, which is higher 
than the frequency of the second eigenmode (Ωcr > ω2), can be evaluated using (13), (14a) and 
(14b):
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Ω cr = ω 213
2 ξ 2

ξ
2 129ξ2          (15)

Expressions (14a), (14b) and (15) allow us to define four regions, each corresponding to a 
different  nature  of  the  response  to  external  resonance.  These  regions  are  represented  in 
figure 2 for excitation parameters in dimensionless forms:

− Ω < Ωcr : The response is undifferentiated, the highest the frequency and the amplitude 
of excitation, the higher the amplitude of the response;

− Ω > Ωcr and δ < δ1 : Low external resonance occurs, small amplitude response;
− Ω > Ωcr and δ > δ2 : High external resonance occurs, large amplitude response;
− Ω > Ωcr and  δ1 < δ < δ2 :  Hysteresis  region,  high  external  resonance  might  occur, 

depending on the time history of the excitation; two amplitudes, one small and one 
large, are thus possible.

Figure 2: Nature of the response to external resonance.

3.3   Practical example: a cable of the Ben-Ahin Bridge
To illustrate the expressions found in the previous sub-section, some results are shown 

based on the  geometric  and mechanical  properties  of  a  cable  of  the  Ben-Ahin  Bridge  in 
Belgium, which was abundantly studied by Da Caetano [5]. Its main characteristics are all 
supposed constant along its length and are the following:

− Length: L = 110.505 m (distance between the anchorages);
− Mass per unit length: ρ = 64.841 kg/m;
− Cross-sectional area: S = 82.6 cm2;
− Young Modulus: E = 210 GPa ;
− Prestress:  T = 4902.7 kN (actually the prestress is not exactly constant in the nume-

rical model due to gravity; the value given here is that at the lower anchorage).
From those values, the parameters characterizing the vibrations of the horizontal cable can 

be  evaluated:  Irvine's  parameter  λ2 =  0.0727,  the  frequency of  the  1st out-of-plane  mode 
ω1

out = 7.82 rad/s, the frequency of the first in-plane mode ω1
in = 7.84 rad/s. One remarks that 

the value of Irvine's parameter of this cable is very low, therefore, the cable is small sagged.
The finite  element  software used to validate the analytical  model and its hypotheses is 

ADINA, a software which has already been successfully used for the calculation of cable 
structures  [27,  28].  A  convergence  study  in  time  and  space  was  first conducted  for  a 
horizontal  cable subjected to  gravity and to  an excitation perpendicular  to its  axis  with a 

7



Cyril E. Douthe and Charis J. Gantes

frequency  equal  to  that  of  the  second  in-plane  eigenmode  and  an  amplitude  of  10 mm. 
Rayleigh damping proportional to the mass is chosen, because this is what is generally used 
for the modeling of cables and because it is the numerical damping which is the closest to the 
analytical  model  (in the present example  ξ = 0.5 %). Geometrical  non-linearities are taken 
into  account  and  the  default  implicit  dynamic  algorithm  based  on  Newmark  integration 
method is used with a consistent mass matrix. The time step is varied from 1 ms to 10 ms and 
the number of elements from 30 to 100. The calculations are separated into two parts: the 
transient  period,  from 0 s to  300 s,  and the steady state,  from 300 s and 340 s.  From the 
variations of the amplitude of the steady state response, 40 truss elements and Δt = 5 ms was 
chosen as the best compromise between computation time and accuracy.

Then the results of the numerical model were compared with those of the analytical model 
for  an  excitation  of  Δ = 20 mm.  They  globally  showed  very  good  agreement  and  the 
differences in the steady state amplitude varied from 1.5 % for Ω = ω2 to 5 % for Ω = 1.05 ω2.

4. UNCOUPLED PARAMETRIC RESONANCE
The phenomenon of parametric resonance is relatively well known from the literature but it 

is often not distinguished between in-plane and out-of-plane resonance. As, for small sagged 
cables, the frequency of the first out-of-plane mode is very close to that of the first in-plane 
mode  (a  few  percentage  points  in  cables  of  cable  stayed  bridges),  they  might  often  be 
confused. Therefore,  it  is meaningful to study the phenomenon and to look for a possible 
internal resonance between the first in-plane and out-of-plane modes.

4.1 Analytical expression of the amplitude and the threshold
The equations of uncoupled parametric resonance are often found by taking into account 

only the first in-plane mode in the general equations of motion [8], [10]. Here, the first in-
plane and first out-of-plane modes will be considered alternatively (ω1 representing either the 
frequency of the  first in-plane or first out-of-plane mode) and the characteristic equation of 
parametric resonance  is deduced from (8a) by considering that the cable is horizontal  and 
submitted to a horizontal motion (B = 0):

[ 3
4

c3 A2−ω1
2aω1

2−Ω2

4
−ξ ω1Ω

ξ ω1Ω 3
4

c3 A2ω1
2aω1

2−Ω2

4
]⋅[ p11

p12] = [00]          (16)

This problem has a nonzero solution, if the determinant of the matrix is equal to zero:

9
16

c3
2 A43

2
c3ω1

2−Ω 2

4
A2ξ 2ω1

2Ω 2−ω1
4a2ω1

2−Ω2

4 
2

= 0          (17)

One recognizes in (17) a bi-quadratic equation in A. It has real solutions if and only if its 
discriminant is larger than or equal to zero, which is equivalent to the following condition:

a2ω1
2−ξ 2Ω 2  0         (18)

Equation  (18) determines  a  first  condition on the instability zone:  for a given exciting 
frequency  Ω,  as  long as the dimensionless  amplitude  of  the excitation  is  below a certain 
threshold  a2  ξ 2Ω2 /ω1

2 ,  there  is  no instability  and the only solution of the problem of 
parametric  excitation  is  zero  (p11 = p12 = 0);  on  the  contrary,  when the  exciting  amplitude 
reaches  the  limit  amplitude  a2  ξ 2Ω 2/ω1

2 ,  equation  (17)  has  two  solutions  and  the 
characteristic amplitudes of uncoupled parametric resonance AU are given by:
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AU= 4
3

ω1
2

c3
⋅ Ω

2ω1 
2

−1±a2−4ξ 2 Ω
2ω1 

2

         (19)

One remarks that the limit case a2 = ξ2Ω2/ω1
2 corresponds to the pair “exciting amplitude/ 

exciting  frequency”  for  which  the  two characteristic  amplitudes  of  uncoupled  parametric 
resonance  (19)  are  equal.  For  a  given  exciting  amplitude,  this  frequency  is  the  highest 
frequency for which parametric resonance may occur. It is also the frequency for which the 
amplitude of parametric resonance is the highest.  It is noted also that condition (18) is not 
sufficient for appearance of parametric resonance: the expression under the square root in (19) 
has  to  be  positive.  It  is,  thus,  necessary  for  the  dimensionless  amplitude  of  parametric 
excitation to be higher than a certain critical value aU which is often called the threshold of 
parametric excitation:

aU = [ Ω
2 ω1 

2

−1]
2

4 ξ 2 Ω
2 ω1 

2

         (20)
Another way to look at this condition, on the dimensionless amplitude of excitation, is to 

rewrite (20) as a condition on the exciting frequency: 

Ω ∈ [2ω11−2 ξ 2−a2−4ξ 21−ξ 2 , 2ω11−2 ξ2a2−4ξ 21−ξ 2]          (21)

4.2 Numerical study of amplitudes and thresholds
As the influences of damping ratio, frequency and exciting amplitude have been studied 

abundantly in the past (for example in [10]), it is here focused on the interaction between in-
plane  and  out-of-plane  parametric  resonance.  A first  model,  in  which  a  horizontal  cable 
identical to the one in section 3.3 has an anchorage moving horizontally, is hence considered. 
It is then modified for the out-of-plane instability by introducing at time zero an out-of-plane 
perturbation in the form of a small vanishing wind gust, uniformly distributed along the cable. 
The variations of the amplitude of both responses with the frequency of the excitation are 
shown in figure 3a for Δ = 20 mm and ξ = 0.08 %. The amplitudes of the response plotted in 
this figure are steady state amplitudes obtained after a transient period of 1000 cycles. It is 
observed that there is very good agreement between numerical and analytical results for both 
in-plane  and  out-of-plane  response  for  the  stable  branches  (corresponding  to  growing 
frequencies).  There  is  also  good  agreement  of  the  frequency  of  the  jump  phenomenon 
(obtained  with  a  decreasing  frequency)  for  the  in-plane  numerical  simulations;  but, 
numerically, the frequency of  the out-of-plane jump coincides with the frequency of the in-
plane jump.

From this last observation, one may suppose that the in-plane vibration is not stable and 
turns into out-of-plane vibration when it is disturbed. Indeed, every time that a small out-of-
plane perturbation  is  introduced in a plane model  where in-plane parametric  resonance is 
installed, out-of-plane resonance appears and then gradually dominates the whole response 
and the in-plane vibration vanishes. 

These results are confirmed when investigating more specifically the threshold amplitudes 
of  the  out-of-plane  mode  (figure 3b).  Two  damping  factors  are  tested  (ξ = 0.1 %  and 
ξ = 0.5 %)  and  both  sets  of  simulations  lead  to  similar  results.  Figure 3b represents  the 
threshold  amplitudes  for ξ = 0.5 %.  For  low  frequencies,  there  is  very  good  agreement 
between analytical and numerical results for both the in-plane and the out-of-plane threshold. 
For high frequencies, numerical results for the in-plane and out-of-plane threshold coincide 
and are in very good agreement with the analytical values of the in-plane mode. The in-plane 
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mode of vibration is unstable and turns into out-of-plane vibration. These results should be 
confirmed for other values of Irvine's parameter, thus, with other ratios between in-plane and 
out-of-plane frequencies. Yet, it seems that the amplitude of the response which should be 
taken into  account  is  that  of  the  out-of-plane  mode  and that  the  following  bandwidth  of 
parametric resonance has to be considered:

Ω ∈ I in∪I out  where
I in = [2ω1

in1−2ξ 2− a2−4 ξ 2 ,2ω1
in1−2ξ 2 a2−4 ξ2]

I out = [2ω1
out 1−2 ξ2−a2−4 ξ 2 ,2ω1

out 1−2ξ 2a2−4 ξ 2]
          (22)

Figure 3: Influence of the excitation frequency 
a) on the amplitude of in-plane and out-of-plane parametric resonance, b) on the corresponding thresholds.

5. COUPLED EXTERNAL/PARAMETRIC RESONANCE

5.1 Coupled threshold of parametric resonance

5.1.1 Analytical expression
Considering now the coupled system of equations  (8a) and (8b),  equation (8a) will  be 

studied first. This system of equations is homogeneous, so that it has nonzero solutions if and 
only if the determinant of the matrix is equal to zero, which is equivalent to requiring that 
solutions of the following equation can be found:

9
16

c3
2 A43

c3

2 [2c3 B2ω1
2− Ω2

4 ]A2[ω1
2−Ω 2

4
2c3 B2]

2

−ω1
4 a2ξ 2 ω1

2 Ω2 = 0     (23)

A bi-quadratic equation in A can be recognized in (23) and thus, the first condition for the 
existence of real roots to this equation is that its discriminant is equal to zero:

a2ω1
2−ξ 2Ω 2  0          (24)

It  is  noteworthy that  this  condition  is  identical  to  the  one obtained  for  the  uncoupled 
problem (18):  the  highest  frequency  for  which  parametric  resonance  may  appear  is  thus 
identical for the coupled and the uncoupled problem. As previously, if the non-dimensional 
amplitude of parametric excitation is higher than a certain threshold (a > ξ Ω/ω1), then the 
solution of (23) can be written:

A=−8
3

B24
3

ω1
2

c3 [ Ω
2ω1 

2

−1±a2−4ξ 2 Ω
2ω1 

2] =AU
2 −8

3
B2          (25)

Considering (25), one remarks that like for uncoupled parametric resonance, the problem 
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of coupled parametric resonance has two solutions: one stable (with the positive sign under 
the  square  root)  and  one  unstable.  Like  for  uncoupled  parametric  resonance,  the  non-
dimensional amplitude of parametric excitation has to be higher than a certain value, called 
threshold of coupled parametric resonance aC. Below the threshold, no parametric resonance 
appears:  the  system  is  uncoupled  and  external  resonance  only  may  occur.  Above  this 
threshold, coupled external-parametric resonance may occur and the amplitude of the coupled 
parametric  resonance  is  always  smaller  than  that  of  uncoupled  parametric  resonance  (the 
amplitude of the second mode reduces the amplitude of the first mode). 

The value of the threshold amplitude depends thus on the history of the vibration of the 
cable. If the vibration starts from a non-coupled state where only external resonance exists, 
then when the threshold of coupled parametric resonance is just reached, the amplitude of 
external resonance is still the uncoupled one (BC = BU given by (11)). On the contrary, if the 
vibration starts from a coupled state where both resonances exist, then, when the threshold is 
reached, the amplitude of external resonance is still the coupled one.

In the first case, the coupled threshold amplitude  δCU can be found without solving the 
coupled  system  of  equations.  Its  value  is  obtained  by  solving  the  following  non-linear 
equation resulting from (26) with A = 0 and B = BU which is a stable solution of (11):

δCU = 2T
E S sin θ [ Ω

2ω1
2

−1−2c3

ω1
2 BU

2 δCU ]
2

4 ξ 2 Ω
2ω1 

2

         (26a)

In the second case, it is necessary to solve the coupled system of equations and to obtain 
the  value  of  the  coupled  amplitude  BC in  order  to  introduce  it  in  the  expression  of  the 
threshold amplitude which is then given by:

δCC = 2T
E S sin θ [ Ω

2ω1 
2

−1−2c3

ω1
2 BC

2 δCC]
2

4 ξ 2 Ω
2 ω1 

2

         (26b)

5.1.2 Nature of the coupled response
The exciting frequencies and exciting amplitudes, for which external resonance occurs, are 

known from section 3, so that the nature of the coupled response can be deduced by adding 
the curve corresponding to the threshold of coupled parametric resonance (26a) and (26b) into 
the diagram of external resonance (figure 2). Such a diagram is shown in figure 4 for the cable 
of the Ben Ahin  Βridge studied previously (section 3.3), with an inclination of 30° and a 
damping  ratio  of  0.5 %.  For  this  angle,  Irvine's  parameter  becomes  λ2 = 0.0544  and  the 
frequency of the first in-plane mode becomes  ω1

in = 7.84 rad/s.  The curve δCU represents the 
amplitude of the coupled threshold when coming from an uncoupled situation (26a), while the 
curve δCC represents the amplitude of the coupled threshold when coming from a coupled 
situation (26b). The curve δ1 is the amplitude below which no external resonance occurs (14a) 
and  below  which  the  amplitude  of  the  response  is  that  of  the  lower  branch  of  external 
resonance. The curve δ2 indicates the amplitude above which external resonance occurs with 
certainty (14b) and above which the amplitude of the response is that of the upper branch of 
external resonance. 

In figure 4, seven different regions can be distinguished:
− Ω < Ωcr  and  δ < δCU : The response is undifferentiated, the higher the frequency and 

the amplitude of excitation, the higher the amplitude of the response (region 1).
− Ω > Ωcr and δ < δ1 : No external resonance occurs, the response has a small amplitude 

(region 2).
− Ω > Ωcr  and  δ2 < δ < δCU :  Only  external  resonance  occurs  with  large  amplitude 
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(region 3).
− Ω > Ωcr  and  δ2 < δ < min( δCC , δ2 ) : Uncoupled hysteresis region. External resonance 

might occur alone, depending on the time history of the excitation; two amplitudes, 
one small and one large are possible for the response (region 4).

− Ω > Ωcr and δCU < δ < δ2 : Coupled hysteresis region I. Coupled resonance might occur 
depending on the time history of the excitation. Two sets of amplitudes are possible: 
one  uncoupled  external  resonance  with  low  amplitude,  coupled  external  and 
parametric resonances, both with high amplitudes (region 5).

− Ω > Ωcr  and  δCC < δ <  δCU :  Coupled hysteresis  region II. Coupled resonance might 
occur depending on the time history of the excitation (oscillation must come from an 
initial coupled situation). Two sets of amplitudes are possible and identical to those of 
the coupled hysteresis region I (region 6).

− Ω > Ωcr and max( δCU , δ2 ) < δ :  Coupled external/parametric  resonance occurs with 
high amplitudes of the response of the first and second modes (region 7).

Figure 4: Nature of the response to coupled external/parametric resonance (ξ = 0.5 %).

Comparing  then  the  amplitude  of the  uncoupled  threshold  δU (20)  (dotted  curve  on 
figure 4) with the characteristic curves of the coupled thresholds δCU (26a) and δCC (26b) and 
those of the uncoupled hysteresis region δ1 (14a) and δ2 (14b), it is observed that the coupling 
causes a shift toward the high frequencies of the instability region, as well as a widening of 
this instability region. This widening is reduced by the hysteresis region but still, the coupled 
instability region remains wider than the uncoupled one. Taking the coupling into account 
seems, thus, necessary.
5.1.3 In-plane/out-of-plane interaction and numerical validation

To investigate the different thresholds, three different schemes are used for the time history 
of the excitation because of the hysteresis region: 

− the “increasing low” scheme used to get the lower branch of external resonance:  the 
amplitude grows slowly until it reaches the desired value, and then it remains constant 
until steady state.

− the  “increasing  high” scheme used to  get  the  higher  branch of  external  resonance 
before coupling appears:  calculations start from a first run in which the frequency is 
out-of the hysteresis region and for which the exciting amplitude is below that of the 
threshold of coupled parametric resonance,  the exciting frequency is increased until 
the desired one and then the amplitude until parametric resonance appears. 

− the “decreasing coupled” scheme used to get the upper branch of external resonance 
with coupled external/parametric resonance: the amplitude starts from a high value 
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which  is  out-of  the  hysteresis  range  of  coupled  external/parametric  resonance  and 
remains  constant  until  steady state  takes  place,  then it  is  decreased slowly until  it 
reaches the desired amplitude of excitation and remains constant until steady state.

Figure 5: Thresholds of coupled external-parametric resonance out-of-plane.

Using these three time histories numerical values for the threshold have been determined 
and compared to analytical  values obtained by expressions (26a),  (26b) and (20).  For the 
plane model, very good agreement of the various thresholds was found. The results for out-of-
plane model are presented in figure 5 for the out-of-plane model.  One observed that there is 
good agreement of the two thresholds and a slight underestimation of the amplitude of the 
high limit of the hysteresis region. It is however remarkable that, like for the horizontal cable, 
when the analytical value of the threshold of coupled in-plane parametric resonance is below 
that  of  coupled  out-of-plane  resonance,  the numerical  value  of  the  out-of-plane  threshold 
follows that of the in-plane threshold. In other terms, like for the horizontal cable, the first in-
plane mode is unstable and almost vanishes when an out-of-plane perturbation is introduced. 
This time however, when the out-of-plane perturbation is introduced, the first out-of-plane 
mode settles slowly and finally dominates the response, but the first in-plane mode does not 
vanish completely.  The second out-of-plane  mode  also  accompanies  the first  out-of-plane 
mode,  and indeed,  develops  more  quickly  (the  interaction  of  these  four  modes  is further 
discussed in section 5.3.2).

5.2 Coupled amplitudes and phases

5.2.1 Influence of the exciting amplitude
It is supposed now that the dimensionless amplitude of parametric excitation is above that 

of the threshold (26a) or (26b), which means that parametric resonance appears and that there 
is  actually coupling between the first  and second mode of vibration.  The purpose of this 
subsection is to determine the amplitudes of coupled external and parametric resonance by 
solving simultaneously (8a) and (8b). The expression of parametric resonance (30) resulting 
from (8a) is introduced into (8b):

[ 20
3

c3B2ω2
2−Ω 22c3 AU

2 −ξ ω2 Ω

ξ ω2Ω 20
3

c3B2ω2
2−Ω22c3 AU

2 ]⋅[ p21

p22] = [ 0

− δcosθ Ω 2

π ]          (27)

The above matrix can always be inverted. The coupled equations (27) are thus solved and 
combined,  writing  that  B2=p21

2+p22
2,  in  order  to  find  the  value  of  the  amplitude  of  the 

vibration of the second mode: 
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400
9

c3
2 B640

3
c3ω2

2−Ω22 c3 AU
2 B4[ω2

2−Ω22c3 AU
2 2

ξ 2 ω2
2 Ω2]B2= δ2 cos2θ Ω4

π2 (28)

This equation differs a lot from that of the uncoupled problem (equation (11)). Again, it 
can be solved analytically by using Cardan's method, but developing it here is not meaningful, 
and it is used only for numerical analysis. Figure 6a, for example, shows the variations of the 
amplitude of the response with the amplitude of the excitation for an exciting frequency of 
Ω = ω2. The damping ratio is 0.5 %. One notes that the exciting frequency is smaller than the 
critical frequency of external resonance, reducing the hysteresis region (Ω = ω2 < Ωcr). Thus, 
it is verified that, below the threshold amplitude of coupled parametric resonance δCU (26a), 
the  response  is  uncoupled  and  only  the  second  mode  is  excited.  Above  this  threshold, 
parametric resonance appears and the response is coupled. The amplitude of the second mode 
is lower than in the uncoupled situation (dotted line), which is reasonable because the second 
mode competes with the first mode. 

Figure 6: Influence of the exciting amplitude on the amplitude of coupled response, a) Ω = ω2, b) Ω = 1.026 ω2.

When the frequency is higher than the critical frequency of external resonance, hysteresis 
phenomena appear and, for a given amplitude of excitation, many states of vibration can exist, 
depending  on  the  time  history  of  the  vibration,  as  illustrated  in  figure 6b for 
Ω = 1.026 ω2 > Ωcr. It is noted that:

− 0 < δ < δ2 : only low amplitude external resonance occurs (heavy dotted black curve).
− δ2 < δ < δCC : only external resonance occurs but it might have high (heavy full black 

curve) or low (heavy dotted black curve) amplitude.
− δCC < δ < δCU : the response might be coupled external-parametric resonance (blue and 

red curves) if  it  is  coming from a coupled situation or, otherwise,  uncoupled with 
external  resonance only,  either high or low amplitude (heavy full and dotted black 
curve respectively).

− δCU < δ < δ1 : the response might be coupled (blue and red curves) if coming from a 
coupled situation  or from a situation  with high amplitude  of the second mode or, 
otherwise, it might be uncoupled with low amplitude external resonance only (heavy 
dotted black curve). 

− δ1 < δ : only coupled external-parametric response occurs.

5.3. Numerical validation with ADINA

5.3.1 Influence of the amplitude of excitation
To validate the analytical results presented above, purely plane simulations are conducted, 

as well as three dimensional simulations by introducing a small out-of-plane perturbation into 
the  plane  model.  Figures 7a and  7b show  the  amplitude  of  external  resonance  and  the 
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amplitude of parametric resonance, respectively. The exciting frequency is here Ω = 1.004 ω2. 
Before parametric resonance occurs, the system is uncoupled and there is excellent agreement 
between the numerical  simulations  and the analytical  model  (figure 7a).  In figure 7b, it  is 
observed that the threshold amplitudes  of parametric resonances  almost coincide for the in-
plane model as well as for the out-of-plane model. The numerical threshold out-of-plane is 
between  14 mm  and  15 mm  while  the  analytical  model  gives  Δthr = 14.0 mm,  and  the 
threshold in-plane is between 20 mm and 21 mm while analytically Δthr = 19.7 mm. 

Figure 7: Comparison of analytical and numerical amplitudes of a) external resonance, b) parametric resonance.

Looking now at the amplitudes of response, once parametric resonance has appeared, the 
numerical  in-plane parametric  resonance response values  are  slightly below the  analytical 
ones, contrary to the numerical out-of-plane amplitudes, which are slightly higher than the 
analytical ones. This is in accordance with the facts that the numerical threshold in-plane is 
higher than the analytical threshold, and that the numerical threshold out-of-plane is smaller 
than the analytical one. Moreover, in figure 7a, it is observed that the analytical model slightly 
underestimates the amplitude of coupled external resonance (about 2 % for  Δ = 20 mm and 
5 % for  Δ = 100 mm).  In these two figures the agreement  of the analytical  and numerical 
results can be described as very good for small exciting amplitudes and as satisfactory for 
higher amplitudes.
5.3.2 Influence of the frequency of the excitation

Another set of numerical experiments is conducted to study the influence of the exciting 
frequency  for  a  fixed  exciting  amplitude,  here  Δ = 20 mm.  The  exciting  frequency  was 
increased  from 0.98 ω2 to  1.04 ω2 and  decreased  from 1.04 ω2 to  1.01 ω2 with  a  step  of 
0.005 ω2, each frequency being kept constant during 1000 cycles for the steady state to install. 
The results  are  presented in  figure 8a.  The curves  (analytical  model)  and dots  (numerical 
simulations) fit remarkably well for growing and decreasing exciting frequency.

A similar set of experiments with Δ = 20 mm and ξ = 0.5 % is then conducted numerically 
for the out-of-plane response for both increasing and decreasing frequencies from 0.98 ω2 to 
1.04 ω2 introducing again a small out-of-plane perturbation at time zero  (see figure 8b and 
figure 9). One remarks first that, like for the horizontal cable (section 4.2.2), the out-of-plane 
perturbation  causes  an  instability  of  the  in-plane  mode,  so  that  the  first  in-plane  mode 
vanishes and the first out-of-plane mode dominates the steady state response. However, for 
high frequencies, the coupled out-of-plane response becomes more complex and may have 
nonzero components for up to four eigenmodes  (see figure 9). Depending on the frequency 
and on the history of excitation different states might exist: 

− The first one corresponds to low frequencies below that of resonance (Ω < ω2), where 
response of the cable is purely external in-plane resonance.

− The second one is a bi-modal vibration state where out-of-plane parametric resonance 
is  coupled  with  in-plane  external  resonance.  It  occurs  for  a  relatively  reduced 
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bandwidth (ω2 < Ω < 1.01 ω2).
− The  third  one  involves  the  first  four  eigenmodes  and  occurs  also  for  a  reduced 

bandwidth (1.01 ω2 < Ω < 1.02 ω2). 
− The fourth one corresponds to the hysteresis region (Ω > 1.02 ω2) where the response 

might be either that of purely uncoupled in-plane resonance (dotted lines in figure 9), 
or a four modes coupled response, in which the coupling between the four modes is 
very strong.

Figure 8: Influence of the excitation frequency on a) the in-plane coupled response, b) the out-of-plane response.

Figure 9: Influence of the excitation frequency on the number of modes in the out-of-plane coupled response.

It is hence clear that the two modes interaction analytical model presented here can not 
capture the  whole  response  of  the  inclined  cable  because  it  involves  up  to  four  modes. 
However, it is noted in figure 8b that there is very good agreement between the amplitudes of 
the analytical model and the numerical simulations for the second in-plane mode. One thus 
deduces that in-plane external resonance is not affected by the presence of the first in-plane 
and second out-of plane modes, so that, practically,  the two modes interaction is valid for 
external resonance. One observes then that the threshold of coupled out-of-plane parametric 
resonance  is  correctly  predicted  by  the  analytical  model  as  well  as  the  threshold  of  the 
hysteresis  region.  Moreover,  in  the  regions  where  the  response  has  only  two  non-zero 
components or a small contribution of the second out-of-plane mode (ω2 < Ω < 1.02 ω2), the 
analytical model fits relatively well with numerical results.

It  is  therefore  considered  that  the  two  modes  interaction  model  captures  the  main 
characteristics  of  the  response  and  is  sufficient  for  practical  structural  design  purposes. 
Considering the fact that for 1.01 ω2 < Ω < 1.02 ω2, the amplitude of the first in-plane mode is 
small when compared to that of the other eigenmodes, the three modes interaction model of 
Gonzalvez-Buena et al.  [21] is satisfactory and it can be used to determine the value of the 
threshold of the second out-of-plane mode. For higher frequencies, it is necessary to refer to 
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the general four modes interaction of Rega [23]. 

6. CONCLUSION
The objective of the present work was to propose the simplest possible analytical model for 

the proper investigation of coupled external/parametric resonance in order to bridge the gap 
between complex mathematical interaction models and practical design of cables in structural 
engineering. To this end, abundant numerical applications and simulations were conducted for 
realistic values, based on actual bridge cables. Two specific cases were first investigated to 
gain  better  understanding  of  the  two resonance  phenomena  separately.  The first  one  was 
dedicated  to  external  resonance  and dealt  with  a  horizontal  cable  submitted  to  a  vertical 
harmonic  motion  at  one  end.  Most  of  the  existing  results  on  the  phenomenon  were  re-
established  analytically  (in  particular  the  limits  of  the  hysteresis  region)  and  confirmed 
numerically. The second specific case was dedicated to parametric resonance and dealt with a 
horizontal cable submitted to a horizontal harmonic motion at one end. Again, most of the 
existing  results  on  parametric  resonance  were  re-established  analytically  and  confirmed 
numerically.  Moreover  it  was  observed  that,  when  disturbed  out-of-plane,  the  in-plane 
parametric resonance was unstable and turned into out-of-plane parametric resonance, so that 
only  out-of-plane  parametric  resonance  is  stable  and  its  bandwidth  is  formed  by  the 
disjunction of the in-plane and out-of-plane bandwidth. 

Then, the coupling phenomenon strictly speaking was investigated,  focusing on a cable 
with a 30° inclination. Analytical expressions for the coupled amplitudes were developed and 
their  comparison with numerical  simulations showed very good agreement.  The study has 
proved that  the  coupling  shifts  the  bandwidth  of  parametric  resonance  toward  the  higher 
frequencies and diminishes the value of the threshold when the frequency is above that of 
resonance.  However,  very  strong  interaction  between  the  hysteresis  regions  of  the  two 
resonances  has  been  found.  Indeed,  parametric  resonance  requires  a  high  amplitude  of 
external  resonance  to  take  place,  so  that  one  could  say  that  it  is  necessary  that  external 
resonance appears first to cause parametric resonance. Concerning amplitudes, when coupling 
appears, it diminishes both, the amplitude of external and parametric resonance. 

Moreover,  numerical  simulations  showed  that  the  introduction  of  an  out-of-plane 
perturbation led to coupled out-of-plane vibrations so that, like for the horizontal cable, the 
only stable parametric resonance is the out-of plane of which the instability bandwidth might 
be considered in a first approximation as formed by the disjunction of the in-plane and out-of-
plane bandwidth. However, it  has been shown that, under certain conditions, the coupling 
phenomenon might involve up to four eigenmodes: the first in-plane and out-plane and second 
in-plane and out-of-plane modes. It has been also shown that the additional vibration modes 
only partially affect the amplitude of the main eigenmodes in the frequency domain useful for 
the engineer, for frequencies out-of the hysteresis range.
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