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Abstract. This paper is mainly devoted to enhanced computational algorithms to simulate the
load-bearing behavior of reinforced concrete structures under dynamical loading. In order to
take into account uncertain data of reinforced concrete, fuzzy and fuzzy stochastic analyses
are presented. The capability of the fuzzy dynamical analysis is demonstrated by an example
in which a steel bracing system and viscous damping connectors are designed to enhance the
structural resistance of a reinforced concrete structure under seismic loading.
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1 INTRODUCTION

The numerical analysis of reinforced concrete (RC) structures under dynamical loads re-
quires realistic nonlinear structural models and computational algorithms. Furthermore, the
engineer/designer has to deal with uncertainty which result from variations in material parame-
ters as well as incomplete knowledge about further excitations and the quality of the numerical
model itself. The variations in material parameters may be assessed by the uncertainty mea-
sure probability. However, the stochastic model cannot be determined precisely because of rare
information in most cases. Therefore, an imprecise probability approach is suggested in this
contribution bases on the uncertainty measure fuzzy probability resulting in a set of probabil-
ity models which assessed by membership values. Using this approach, input variables may be
also modeled as fuzzy quantities and considered as a special case, if only subjective or linguistic
assessments are available.

The incorporation of uncertain input variables within a dynamic structural analysis leads to
uncertain structural responses representing the uncertain structural performance close to real-
ity. The uncertain structural responses are determined using fuzzy stochastic dynamic analysis.
Thereby, fuzzy stochastic processes result because of the specific dynamic actions. The fuzzy
stochastic structural analysis of practical problems requires high performance computational
tools in order to deal with a large number of uncertain input variables as well as complex
nonlinear structural models. An efficient approach is introduced which is based onα-level op-
timization and Monte-Carlo simulation using meta-models which partly replace the dynamic
structural analyses.

2 UNCERTAINTY IN STRUCTURAL DYNAMICS

2.1 Data models

The input variables – for geometry, material, load etc. – of the numerical simulations of
structural behavior are generally uncertain. To describe this uncertainty, traditional stochastic
and non-stochastic models are available [6]. In Fig. 1, the models randomness, fuzziness and
fuzzy randomness are displayed. The choice of the model depends on the available data.

If sufficient statistical data exist for a parameter and the reproduction conditions are con-
stant, the parameter may be described stochastically. Thereby, the choice of type of probability
distribution function affects the result considerably.

Overcoming the traditional probabilistic uncertainty model enables the suitable considera-
tion of imprecision (epistemic uncertainty). Thereby, epistemic uncertainty is associated with
human cognition, which is not limited to a binary measure. Advanced uncertainty concepts
allow a gradual assessment of intervals. This extension can be realized with the uncertainty
characteristic fuzziness. The combination of fuzziness and probabilistic leads to the general-
ized model fuzzy randomness.
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Figure 1: Models of uncertainty.
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2.1.1 Fuzzy variables

Often, the uncertainty description for parameters is based on pure expert judgment or sam-
ples which are not validated statistically. Then, the description by the uncertainty model fuzzi-
ness is recommended. The model comprehends both objective and subjective information. The
uncertain parameters are characterized with the aid of a membership functionµ(x) (see Fig. 1b)
and Eq. (1)). The membership functionµx(x) assesses the gradual membership of elements to
a set. Fuzzy variables

x̃ = {(x; µx(x)) | x ∈ X}; µx(x) ≥ 0 ∀x ∈ X (1)

may be utilized to describe the imprecision of structural parameters directly as well as to specify
the parameters of fuzzy random variables.

2.1.2 Fuzzy random variables

If, e.g. reproduction conditions vary during the period of observation or if expert knowledge
completes the statistical description of data, an adequate uncertainty quantification succeeds
with fuzzy random variables. The theory of fuzzy random variables is based on the uncer-
tain data model fuzzy randomness representing a generalized model due to the combination of
stochastic and non-stochastic characteristics. A fuzzy random variableX̃ is defined as the fuzzy
set of their originals, whereby each original is a real-valued random variable X.

The representation of fuzzy random variables presented in this paper is based on [12]. The
space of the random elementary eventsΩ is introduced. Here, e.g. the measurement of a struc-
tural parameter may be an elementary eventω. Each elementary eventω ∈ Ω generates not
only a crisp realization but a fuzzy realizationx̃(ω) = x̃, in which x̃ is an element of the set
F(R) of all fuzzy variables onR. Each fuzzy variable is defined as a convex, normalized fuzzy
set, whose membership functionµx(x) is at least segmentally continuous. Accordingly, a fuzzy
random variablẽX is a fuzzy result of the mapping given by

X̃ : Ω 7→ F(R). (2)

Based on this formal definition, a fuzzy random variable is described by its fuzzy cumulative
distribution function (fuzzy cdf)̃F (x). The functionF̃ (x) is defined as the set of real-valued cu-
mulative distribution functions F(x) which are gradually assessed by the membershipµF (F (x)).
F(x) is the cdf of the original X and is referred to as trajectory ofF̃ (x). As result, a fuzzy func-
tional valueF̃ (xi) belongs to each valuexi (see Fig. 2). Thus,̃F (x) represents a fuzzy function
as defined in Section 2.2.1. A fuzzy probability density function

f̃(x) = {(f(x); µf (f(x))) | f ∈ f } ; µf(f(x)) ≥ 0 ∀ f ∈ f (3)

is defined accordingly. In that,f represents the set of all probability density functions defined
onX.

2.2 Uncertain functions and processes

2.2.1 Fuzzy function

In case that fuzzy parameters depend on crisp or uncertain conditions, they are modeled as
fuzzy functionsx̃(̃t) = x̃(θ̃, τ̃ , ϕ̃) or in the special case of pure time dependency as fuzzy
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Figure 2: Fuzzy probability density and cumulative distribution function.

processes̃x(τ̃). Arguments may be the timẽτ , the spatial coordinates̃θ and further parameters
ϕ̃, e.g. temperature. A fuzzy functioñx(̃t) enables the formal description of at least piecewise
continuous uncertain structural parameters inR. In the following, a definition of fuzzy functions
is introduced. Given are

• the fundamental setsT ⊆ R andX ⊆ R,

• the setF(T) of all fuzzy variables̃t on the fundamental setT,

• the setF(X) of all fuzzy variables̃x on the fundamental setX.

Then, the uncertain mapping ofF(T) into F(X) that assigns exactly onẽx ∈ F(X) to each
t̃ ∈ F(T) is referred to as a fuzzy function denoted by

x̃(̃t) : F(T) ˜7→F(X), (4)

x̃(̃t) =
{

x̃t = x̃(̃t) ∀ t̃ | t̃ ∈ F(T)
}

. (5)

In Fig. 3, a fuzzy process̃x(τ) is presented, which assigns a fuzzy quantityx̃(τi) to each time
τi. For the numerical simulation, a bunch parameter representation of a fuzzy function
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Figure 3: Fuzzy process̃x(τ).

x(s̃, t) = x̃(̃t) (6)

is applied. Therewith, the fuzziness of bothx̃ and t̃ is concentrated in the bunch parameter
vectors̃.

For each crisp bunch parameter vectors ∈ s̃ with the assigned membership valueµ(s), a
crisp functionx(t) = x(s, t) ∈ x̃(t) with µ(x(t)) = µ(s) is obtained. The fuzzy function

x̃(t) = x̃(s̃, t) = {(x(s, t), µ(x(s, t))) | µ(x(s, t)) = µ(s) ∀ s | s ∈ s̃} (7)
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may thus be represented by the fuzzy set of all real valued functionsx(s, t) which may be
generated from all possible real vectorss ∈ s̃. For everyt ∈ T, each of the crisp functions
x(s, t) yields valuesxt which are contained in the associated fuzzy functional valuesx̃t. The
real functionsx(s, t) of x̃(t) are referred to as trajectories. Numerical processing of fuzzy
functionsx̃(t) = x(s̃, t) demands the discretization of their argumentst in space and time.

2.2.2 Fuzzy random function

According to Eqs. (2) and (4), a fuzzy random function is the result of an uncertain mapping

X̃(t) : F(T) × Ω → F(R). (8)

Thereby,F(X) andF(T) denote the sets of all fuzzy variables inX andT respectively [14].
At a specific pointt, the mapping of Eq. (8) leads to the fuzzy random variableX̃t = X̃(t).
Therefore, fuzzy random functions are defined as a family of fuzzy random variables

X̃(t) = {X̃t = X̃(t) ∀ t | t ∈ T}. (9)

For the numerical simulation, again the bunch parameter representation of a fuzzy random
function is applied. For each crisp bunch parameter vectors ∈ s̃ with the assigned membership
valueµ(s), a real random functionX(t) = X(s, t) ∈ X̃(t) with µ(X(t)) = µ(s) is obtained.
The fuzzy random functioñX(t) may thus be represented by the fuzzy set of all real random
functionsX(t) ∈ X̃(t)

X(s̃, t) = {(X(t), µ(X(t))) | X(t) = X(s, t); µ(X(t)) = µ(s) ∀ s | s ∈ s̃} (10)

which may be generated from all possible real vectorss ∈ s̃. The real random functionX(t)
∈ X̃(t) is defined for allt ∈ T and referred to as original function. A numerical processing of a
fuzzy random functioñX(t) = X(s̃, t) requires the discretization of their argumentst in space
and time.
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Figure 4: Fuzzy random process̃X(θj , τ).

3 Fuzzy stochastic analysis

Fuzzy stochastic analysis is an appropriate computational model for processing uncertain
data using the uncertainty model fuzzy randomness. Basic terms and definitions related to
fuzzy randomness have been introduced, inter alia, by [12]. The formal description of fuzzy
randomness chosen by [12] is however not suitable to formulating uncertainty encountered in
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engineering tasks. A suitable form of representation with the scope of numerical engineering
tasks is given with the so-calledα-discretization by [6] and [7].

The numerical simulation under consideration of fuzzy variables and fuzzy functions (fuzzy
analysis) may formally be described by the mapping

FFA(d) : x̃(t) 7→ z̃(t). (11)

According to Eq. (11), the fuzzy variables̃x and the fuzzy functions̃x(t) are mapped onto
the fuzzy results̃z(t) with aid of the crisp analysis algorithmd. Every arbitrary deterministic
fundamental solution may be used as algorithmd. On the basis of space and time discretization,
fuzzy functional valuesx(s̃, θj , τi, ϕk) of the functionx(s̃, θ, τ, ϕ) are determined at points
in spaceθj, timeτi, and a realization ofϕ

k
.

The numerical simulation is carried out with the aid of theα-level optimization [7]. For fuzzy
variables̃x and fuzzy bunch parameters̃ of the fuzzy functionsx(s̃, θ, τ, ϕ), an input subspace
Eα is formed assigned to the levelα. By multiple application of the deterministic analysis,
the extreme valueszα, l(θj, τi, ϕ

k
) andzα, r(θj , τi, ϕ

k
) of the fuzzy result variablẽz(θj , τi, ϕ

k
)

are computed. These points are interval bounds of theα-level sets and enable the numerical
description of the convex membership function of the fuzzy result variablez̃(θj , τi, ϕ

k
). For

the computation of̃z(θj , τi+1, ϕ
k
) at the time pointτi+1, the procedure must be restarted at

τ = 0 due to the interaction within the mapping model.
Fuzzy stochastic analysis allows the mapping of fuzzy random input variables onto fuzzy

random result variables. The fuzzy stochastic analysis can be applied for static and dynamic
structural analysis and for assessment of structural safety, durability as well as robustness. Two
different approaches for computation of the fuzzy random result variables have been developed.
The first variant (Fig. 5) bases on the bunch parameter representation of fuzzy random variables
by [14]. The second variant utilizes thelαrα-representation of fuzzy random variables. The
variant to be preferred depends on the engineering task, the available uncertain data and the
wanted results [9].

F (F (d))        fuzzy analysisFA SA

F (d)SA stochastic analysis

d        deterministic dynamical analysis

Figure 5: Fuzzy stochastic analysis (FSA).

The fuzzy stochastic analysis is called fuzzy stochastic finite element method (FSFEM), if
the deterministic dynamical analysis is based on a finite element (FE) model.

4 DETERMINISTIC DYNAMICAL ANALYSIS OF RC STRUCTURES

4.1 1D – Beams

Plane and spatial beam structures are called 1D-structures. For the physical nonlinear anal-
ysis, the cross-sections of the beams are subdivided into layers (plane structures) or fibers (spa-
tial structures). In contrast to the widespread finite element formulations, solutions based on
the differential equations for the straight or imperfectly straight beam also exist. A respective
approach for plane beam structures is presented here.
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The geometrical and physical nonlinear analysis of plane reinforced concrete, prestressed
concrete, and steel beam structures is chosen as fundamental model [13]. The beams are sub-
divided into integration sections, the cross-sections are subdivided into layers. On this basis
an incrementally formulated system of second order differential equations for the straight or
imperfectly straight beam is solved.

[

d∆z(θ1)

dθ1

][k]

(n)

= A(θ1, z)(n−1) · ∆z(θ1)
[k]
(n) + ∆b(θ1)

[k−1]
(n) + d(θ1)(n−1) · ∆ż(θ1)

[k]
(n) +

m(θ1)(n−1) · ∆z̈(θ1)
[k]
(n) (12)

where[k] – counter of iteration steps;(n) – counter of increments;θ1 – bar coordinate;∆ –
increment;z = {z1, z2} = {u v φ; N Q M} – vector of structural responses;A – matrix of
coefficients (constant within the increment);b – ”right hand side” of the system of differential
equations with loads and varying parts resulting from geometrical and physical nonlinearities
as well as with forces from unbonded prestressing;d – damping matrix; andm – mass matrix.

The implicit nonlinear system of differential equations for the differential beam sections is
linearized by increments. All geometrically and physically nonlinear components in the∆b-
vector are recalculated after every iteration step, and theA-, d-, andm-matrix are recalculated
after the completion of the iteration within the increment.

The solution of the system of differential equations by a Runge-Kutta integration results in
the system of differential equations

KT (n−1) · ∆v
[k]
(n) + DT (n−1) · ∆v̇

[k]
(n) + MT (n−1) · ∆v̈

[k]
(n) = ∆P (n) − ∆

o

F
[k]
(n) + ∆∆F (n−1) (13)

of the unknown incremental displacements∆v, velocities∆v̇, and accelerations∆v̈ of the
nodes.

4.2 2D – folded plate RC structures

Shells, folded plates, shear panels and plates are called 2D-structures. Here, we focus on
folded plates which represent the general case for plane 2D structures. They can further be
applied to approximate the shape of slightly curved structures. The internal forces are related
to the reference plane, which is not stringently the midplane. The cross-section is subdivided
into layers to describe the physical nonlinear behavior of reinforced concrete. Over the past
years, a new strengthening technology for damaged RC structures has been developed. The thin
strengthening layers consist of fine-grained concrete reinforced with textiles made of AR-glass
or carbon. The classical layered model with one reference plane for folded plate structures is
enhanced to take into account the later applied strengthening layers.

An extended layer model with specific kinematics, the so-called multi-reference-plane model
(MRM), is used to describe the load-bearing behavior of RC constructions with textile strength-
ening. The MRM consists of concrete layers and steel reinforcement layers of the old construc-
tion, the strengthening layers comprised of the inhomogeneous material textile concrete (TRC),
and the interface layers (Fig. 6). This multilayer continuum has the following kinematic pecu-
liarities. Due to the fact that the modification of the concrete layer thickness is very small and
can be neglected, we haveε33 = 0. Furthermore, the transverse shear stresses in the concrete
layers have no significant influence on the deformation, which means thatε13 = 0 andε23 = 0
can be set to zero. The deformation state of the concrete layers may be described by Kirchhoff
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Figure 6: MRM discretization and kinematics.

kinematics. The independent degrees of freedom are assigned to a reference plane which can
be selected arbitrarily.

The very thin strengthening layers are subject to the same kinematic assumptions. Kirchhoff
kinematics with a reference plane are also assigned to each strengthening layer. The indepen-
dent degrees of freedom of the strengthening layer lie in the reference plane. The bond between
the layers of reinforced concrete and an arbitrary strengthening layer is modeled by an interface.
The interface is an immaterial layer of zero thickness. The bonding state is assessed with the
help of the relative displacements∆v1, ∆v2, ∆v3 between the contact surfaces. In conjunction
with a bonding matrix, the relative displacements enable assumptions regarding delamination
and shear failure.

The FE discretization of the MRM is based on the functional of the complementary energy

extended by the static transition conditions∆p−
+
p= 0 to Or

p and the equilibrium conditions

G · σe
el+

+

pe −ρe · v̈e = 0 in V e

Πmh =

τ2
∫

τ1

n
∑

e=1







∫

V e

[

wc(σ
e
el) + (G · σe

el+
+

pe −ρe · v̈e)T · ve

]

dV +

∫

V e

(σe
el)

T · εe
0 dV

−

∫

O
r, e
p

(pr, e−
+

p r, e)T · vr, edO −

∫

O
r, e
v

(pr, e)T ·
+

v r, edO











dτ (14)

with wc(σ
e
el) – internal complementary energy;G - matrix of differential operators;

+
p – external

forces inV e ; ρe – density in ;v̈e – internal acceleration inV e ; ρe ; εe
0 – initial strain;pr, e –

internal forces in the boundary surfaceOr, e
p ;

+

p r, e – external forces along the boundary surface

Or, e
p ; vr, e – displacements of the boundary surfaceOr, e

p ;
+

v r, e – prescribed displacements of
the boundary surfaceOr, e

v ; τ – time.

After some transformations, the quasi-static part of the equilibrium conditions(G · σe
el+

+

pe)
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and the kinetic energy become visible in the mixed hybrid functional

Πmh =

τ2
∫

τ1

n
∑

e=1







∫

V e

[

wc(σ
e
el) + (G · σe

el+
+

pe)T · ve +
1

2
ρe · (v̇e)T · v̇e

]

dV

+

∫

V e

(σe
el)

T · εe
0 dV −

∫

O
r, e
p

(pr, e−
+

p r, e)T · vr, e dO

−

∫

O
r, e
v

(pr, e)T ·
+

v r, edO











dτ. (15)

In extension to the static case [8], [18], this functional may be applied to a layered continuum
with dynamic loads. Following the procedure described in [8], [18], the steady-state condition
of the mixed hybrid functional

δΠmh, NC =
1

2
δ(d2Πmh) =

k
∑

i=0

δ
(

d2((Ri)Πmh, NC)
)

+

k
∑

j=1

δ
(

d2((Ij)Πmh, NC)
)

= 0 (16)

with

(Ri)Πmh, NC =

τ2
∫

τ1







n
∑

ei=1





1

2

si−1
∑

m=0





∫

V ei, m

(dσei, m
el )T · dεei, m

el dV

+2

∫

V ei, m

(G · dσei, m
el + d

+
p ei, m)T · dvei, mdV

+

∫

V ei, m

ρei, m · (dv̇ei, m)T · dv̇ei, mdV

+2

∫

V ei, m

(dσei, m
el )T · dεei, m

0 dV





−

∫

(Ri)O
r, ei
p

(dpr, ei − d
+

p r, ei)T · dvr, eidO

−

∫

(Ri)O
r, ei
v

(dpr, ei)T · d
+
v r, eidO

















dτ (17)

(Ij)Πmh, NC =

τ2
∫

τ1











n
∑

ej=1

∫

(Ij )
O

ej
p

(dIσej)T · ((j|j)dvr, ej − (j−1|j)dvr, ej−1) dO











dτ (18)

for a layered continuum with k layers is obtained from Eq. (15). Eq. (17) describes the func-
tional for the sub-elementRi whereas Eq. (18) depicts the functional for the interfaceIj. Com-
pared to [8], [18] Eqs. (16), (17) and (18) are extended by inertial forces. In order to account
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for physical nonlinearities of the layered continuum, the layer i with the reference planeRi is
subdivided intosi sub-layers in Eq. (17).

On the basis of Eq. (16), the differential equation of motion can be derived. Thereby, the
same stress shape functions, the same boundary displacement shape functions and the same
element displacement shape function are chosen within all layers of the continuum.

The stress shape functions are chosen in such a way, that they fulfil strongly the quasi-static
part of the equilibrium conditions

G · dσei, m
el + d

+

p ei, m = 0. (19)

The evaluation of the steady-state condition, Eq. (16) yields the MRM element and leads to the
differential equation of motion

KT · dq + M · dq̈ − dR − dRK = 0 (20)

with KT – tangential system stiffness matrix,M – system mass matrix,dR, dRK – differential
load contributions, andq – nodal displacement degrees of freedom. The matrixKT and the
vectorsdR, anddRK are identical to the corresponding values of the hybrid procedure in [8].
The system mass matrixM is specified in [17].

4.3 3D – compact RC structures

Hybrid eight-node hexagonal solid elements for the physical linear static analysis are de-
scribed in [11]. For the physically nonlinear analysis of reinforced concrete and textile rein-
forced concrete (TRC), respectively, two kinds of reinforcement are introduced – single fibers
and fiber layers (see Fig. 7). The formulation of the hybrid eight-node hexagonal solid element
with embedded (textile) reinforcement is outlined in the following.

Starting point is the functional of Hellinger-Reissner

ΠHR =

∫

V

(

σT · (G · v) −
1

2
σT · ε−

+

p T
V · v

)

dV −

∫

Op

+

p T · v dO (21)

with σ, ε, v – stresses, strains and displacements in the volumeV ,
+

p T
V – external forces inV

and
+

p T – external forces along the boundary surfaceOp, and the matrix of differential operators
G.

Based on it, the Hamilton functional is build

H = δ

τ2
∫

τ1

(K − ΠHR) dτ = δ

τ2
∫

τ1





1

2

∫

V

ρ · (v̇)T · v̇ dV − ΠHR



 dτ (22)

with the kinetic energyK.
The physical nonlinear analysis of reinforced concrete is a non-conservative problem aris-

ing e.g. from crack formation, nonlinear material behavior, bonding and damage. In order to
solve this non-conservative problem, a differential load change is considered. Under such load
change, the existence of a potential is assumed. The differential load change leads to a transi-
tion of the structure from the basic condition to a differentially adjacent neighboring condition
(NC). The steady-state condition of the neighboring condition is therefore

δHNC =
1

2
δ(d2H) = 0 (23)
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Figure 7: Eight-node solid element with embedded reinforcements.

with

HNC =

τ2
∫

τ1





1

2

∫

V

ρ · (dv̇)T · dv̇ dV −

∫

V

(

dσT · (G · dv) −
1

2
dσT · dε − d

+
p T

V · dv

)

dV +

∫

Op

d
+
p T · dv dO






dτ. (24)

The continuum is subdivided into n finite 3D elements. The volumeV e of one finite 3D
element e consists of the matrix volumeV e

m and the reinforcement volumeV e
b . Single fibers (sf)

and fiber layers (fl) are taken into account. The volume of the reinforcementV e
b consists then

of nsf single fibers andnfl fiber layers. For a functionF (e.g. stresses, strains, displacements)
holds
∫

V e

FdV =

∫

V e
m

FmdV +

∫

V e
b

FbdV =

∫

V e

FmdV +

∫

V e
b

FbdV −

∫

V e
b

FmdV (25)

=

∫

V e

FmdV +

nsf
∑

i=1

∫

V
e,i

sf

F e,i
sf dV +

nfl
∑

j=1

∫

V
e,j

fl

F e,j
fl dV −

nsf
∑

i=1

∫

V
e,i

sf

F e,i
m dV −

nfl
∑

j=1

∫

V
e,j

fl

F e,j
m dV.

With Eq. (25), the reinforcement is taken into account in Eq. (24)

5 MODEL REDUCTION

The computational cost of a fuzzy stochastic structural analysis of RC structures under dy-
namic loads is almost completely caused by the nonlinear FE analysis. Thus, the most effective
measure to increase the numerical efficiency is to replace the costly deterministic computa-
tional model (innermost loop in Fig. 5) by a fast approximation solution based on a reasonable
amount of initial deterministic computational results. The fuzzy stochastic analysis can then
be performed with that surrogate model, which enables the utilization of an appropriate sample
size for the simulation. The surrogate model is designed to describe a functional dependency
between the structural parametersx and the structural responsesz in the form of a response
surface approximation

z = fRS(x). (26)
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y

x

Figure 8: 3D pictorial view of the upgraded structure with scheme of the bracing system configuration.

For response surface approximation a variety of options exist (see [10], [16]). The suitability
of the particular developments primarily depends on the properties of the computational model.
Due to the very general properties of the FE analysis in structural analysis of textile strength-
ened RC structures, which can hardly be limited to convenient cases, a high degree of generality
and flexibility of the approximation is demanded. In this context, an artificial neuronal network
provides a powerful basis for response surface approximation. This approach can extract in-
formation from initial deterministic computational results and can subsequently reproduce the
structural response based on the extracted information only. According to the universal func-
tion approximation theorem, artificial neural networks are capable of uniformly approximating
any kind of nonlinear functions over a compact domain of definition to any degree of accuracy.
There is virtually no restriction for a response surface approximation with the aid of artificial
neural networks.

In the case, that the global structural behavior is dominated from few eigen modes, the num-
ber of degrees of freedom can be reduced. In the following example, a simplified 2-DOF model
is used as equivalent system for the whole structure.

6 EXAMPLE

6.1 Investigated structure

The investigated building (Fig. 8) has a rectangular plan whose dimensions are10.80 ×
20.40 m2. The elevation of the first floor is 7.40 m, whereas the second one is at 11.10 m. It
is characterized by a RC structure framed in the longitudinal direction only and is designed
against vertical loads without account for seismic action. Columns and beams have rectangular
40 × 50 cm2 and40 × 70 cm2 cross-sections, respectively. The T-shaped hollow tile RC floors
have a 6 cm thick concrete slab, so that the total depth of the first floor is 36 cm, whereas the
second, at the roof level, is 30 cm.

In [4], the results of the vulnerability evaluation have been published. Thereby, a three-
dimensional FEM model with beam elements of the structure has been created considering
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Figure 9: Deformed shapes of the fundamental vibration modes for one principal directions.

floors like rigid diaphragms in the horizontal plane. Two nonlinear static analyses and a set
of linear and nonlinear time history analyses have allowed to evaluate the vulnerability of the
structure in the as-built condition and the effectiveness of the upgrading interventions. First of
all, a calculation of the natural frequencies of the system has been carried out. Relevant values
are 2.075s−1 in Θ1 direction (longitudinal, see Fig. 9) and 0.796s−1 in Θ2 direction (trans-
verse). The mass participation factors are higher than 95% for such modes, so that the structure
can be assumed as a matter of fact as made of two mutually independent SDOF systems in
both Θ1 andΘ2 direction. This consideration assumes relevance in the determination of the
optimal value of the damping devices. In fact, a design procedure for viscous devices based on
simplified 2-DOF system can be used when the structural dynamic behavior can be interpreted
through two SDOF systems [1], [5].

A peak ground acceleration (PGA) of 0.25 g has been assumed in the analysis, considering
the combination of site effect and the importance of the structure regard to collapse.

The time history analysis has shown an excessive deformability of the original structure,
not compatible with the structural safety and immediate occupancy requirement after seismic
events [2], [3]. The assumed upgrading interventions are aimed at reducing the lateral floor
displacements of the structure by means of steel braces fitted with additional energy dissipation
devices. Such devices connect the original structure at the first floor level with rigid steel braces
and act due to the relative displacements occurring between the original structure and the steel
braces. The study, presented in this paper, has been carried out considering the connection
with purely viscous devices. As shown in [4], the reduction of horizontal floor displacements
obtained thanks to the addition of this kind of devices is greater than the one obtained with a
rigid connection of the original structure to the steel braces.

6.2 Uncertain input parameters

No technical documentation regarding the history of the structure is available, apart from the
period of erection, which can be dated at the end of the 60s of XX century, on the basis of oral
testimony.

Because of the lack of technical data and in order to find information about, the quality of
structural materials, some characterization tests have been carried out on concrete core bored
specimens and steel bars taken out of the structure. In result of the tests, the mechanical resis-
tance of concrete is evaluated by means of fuzzy quantities. The concrete compressive and
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Figure 10: Fuzzy load-displacement dependency of the existing RC frame structure.

tensile strength are modeled as fuzzy triangular numbersf̃ck = 〈14, 16.5, 20〉N/mm2 and
f̃t = 〈1.5, 2.0, 2.5〉N/mm2, respectively. A magneto-metric survey has been also carried out
in order to locate the position and the diameter of steel bars in beams and columns. For the
numerical study, twelve steel bars with a fuzzy cross-sectional areaÃ = 〈2.69, 3.14, 3.21〉 cm2

are considered. In order to assess the seismic vulnerability of the existing structure, nonlinear
static analyses have been carried out under consideration of fuzzy resistance variables. The re-
sponse of the as-built structure along both principal directions has then been evaluated in terms
of fuzzy capacity curves F-d (Fig. 10). These curves have been represented in an approximate
way by means of equivalent SDOF nonlinear relationships. Thereby, the kernel curve with
µ (d(F )) = 1 is scaled according to

d̃(F ) = 1.0d(F ) + ã · F (27)

with ã = 〈−3.3, 0.0, 6.0〉 10−3. The steel braces are also modeled as SDOF system with
fuzzy stiffnessK̃ and fuzzy mass̃M. Two variants are investigated especially: Variant 1
K̃1 = 〈39, 40.8, 43〉 MN/m with M̃1 = 〈1.1, 1.3, 1.5〉 t and Variant 2K̃1 = 〈50, 52.5, 55〉
MN/m with M̃1 = 〈1.2, 1.55, 1.8〉 t. The uncertainty of the viscositycx of the connecting
devices is with a fuzzy scaling factor according toc̃ = b̃ · cx with b̃ = 〈0.9, 1.0, 1.1〉.

6.3 Fuzzy structural analysis

Nonlinear time-history analyses of the simplified 2-DOF system have then been performed
considering the seismic input of Taiwan (1999) earthquake, scaled to PGA value of 0.25 g. Fig.
11 displays the time-history of the ground acceleration of the Taiwan earthquake. The fuzzy
maximum displacement̃vTD at the top of the structure has been calculated on the basis of the
fuzzy displacement-time dependency, as shown for one realization in Fig. 12. The parameter
study with variation of the viscosity of damping devices yields a fuzzy functionṽTD(cx) as
presented in Fig. 13 for the Taiwan earthquake.

ACKNOWLEDGMENTS

Authors gratefully acknowledge the support of the German Research Foundation (DFG)
within the framework of the Collaborative Research Center (SFB) 528 and the contribution
of Alberto Mandara (Second University of Naples).

14



F. Steinigen, J.-U. Sickert, W. Graf and M. Kaliske

Figure 11: Acceleration of the Taiwan earthquake scaled to PGA value of 0.25 g.

Figure 12: Realization of the fuzzy displacement-time dependency due to the Taiwan earthquake.

Figure 13: Fuzzy top displacement in dependency of the viscosity.
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[6] B. Möller, M. Beer,Fuzzy Randomness – Uncertainty in Civil Engineering and Computa-
tional Mechanics, Springer, Berlin, 2004.
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