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Abstract.  The rock formation at a depth of several thousand meters is exposed to a 
hydrostatic pressure. Drilling a borehole makes the drill experience same pressure from the 
walls of the borehole. On fast removing of the drill from the borehole the dynamical process 
of unloading borehole walls begins. The sharp decrease of normal pressure on the walls of 
the borehole brings to the increase of ring stresses. The waves of unloading propagate from 
the borehole, which could cause fragmentation of rock and blocking the borehole with 
fractured material. The goal of the present paper is to give the problem statement foe the 
dynamical process of unloading the internal walls of the borehole after removing the drill, 
and successive oil-bearing layer’s fracturing. The layer is represented by the model of 
damageable thermoelastoplastic material with two parameters of damaging (by evolution of 
micropores and by shear microfracturing). The criterion of the beginning of new free surfaces 
within the material) uses the principle of the critical value of specific dissipated energy.The 
problem is treated as two-dimensional (plane deformed state). This task is solved numerical 
modeling on Lagrancian mesh by method similar to M.L. Wilkins one and on local 
reconstruction of the Lanrangian grid in the vicinity of the fracture origination. 
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1 SETTING OF A PROBLEM 
 

Description   of   process  we  will   in   cylindrical   coordinate   system   which   axis   Oz  
is coincide with axis of a hole. Then all parameter of problem depend on space coordinate  
,r  and the time t .  
Write the mass, momentum and internal energy equations in cylindrical coordinate system 
,r : 
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Here and later point under symbol denote the material derivative with respect to time; -
density; vr, v - velocity components; r, , r - stress tensor components (   – ring stress), 
which decompose on spherical   / 3r z       and deviator parts 
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  - velocity strain tensor components; p
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r  - plastic components of velocity strain tensor; T - temperature; ,  - scalar damage 
parameters; c- is the heat conductivity at constant stress; v - is the coefficient of cubic 
expansion;   -  constants  of   materials,  connected  with  damage parameters    and  ; 

p
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r  - plastic components of velocity strain tensor; T - temperature; ,  - scalar 
damage parameters of medium; c-  is the heat conductivity at constant stress; v -  is the 
coefficient of cubic expansion;  - medium parameters connected thermal and damage 
processes. 

Velocity strain tensor components are expressed over velocity components: 
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and decompose on elastic and plastic components: 
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Plastic flow are incompressible:  0 p

z

pp

r  
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     The system of constitutive equation for a model of damageable thermoelastoviscoplastic 
medium is as follows [1-3]: 
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Here  symbol     - Yaumann derivative of deviator components stress tensor; ije - deviator of 

velocity strain tensor; 
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; K0 and  - volume and shear 

module for an undamaged material; ij – tensor of rotation: 
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The last relation from (4) – Misses-Shlexer rule, connecting limit of elasticity under simple 
tension 0Y  and pressure in layer (;  c1, c2 – material constants. 
     System of equations (1) - (5) close by kinetic equations for damage parameters  : 
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Here  - dynamic viscosity for an undamaged material; p0 – initial pressure in pore 
(«горное» pressure);  - index of adiabatic curve for medium, filling  pore;   - initial 
porosity;  ijiju SSS   - intensity of stress deviator; ,*

uS ,* ,B C  - constants of material; 
H(x) - Heaviside unit function. 

From equations (6) we see that the first term describing the viscous growth in domains of  
tension of the material comes into play. The second term describes the viscoplastic flowing in 
pores when the material is compressed.   Note  that  the   equation  for     taken  without   the  
dynamical   problem   on  a  single  spherical  pore  of  inner radius  a   and  other  radius  b   
in  a  viscoplastic  incompressible material. Damage parameter  connect withintensity of 
stress deviator and describe fracture shear.  

The evolution of the intensive plastic flow and accumulation of microstructure damages 
may be considered as a process of  prefracture  of the material. The entropy criterion of 
limiting specific dissipation [1, 3]: 
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is proposed as the criterion of the beginning of macrofracture (i.e., the beginning of formation 
of cracks (new free surfaces) in material). Here *t  is the time of the beginning of fracture; *D  
is a constant of the material (the limiting specific dissipation); Md , Fd  and Td  are 
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mechanical dissipation, dissipation of continuum fracture and thermal dissipation. Similar 
model used for decision problem of hydraulic fracturing of oil layer ([2] etc.).    

  
2 INITIAL AND BOUNDARY CONDITIONS 

 

Initial rock layer be in rest: 0 vvr  in time 0t . Additionally we must define initial 
description of stresses in layer r, , r, value of damage parameters   and   as functions 
of space coordinates r and . 
    As initial distribution for stresses in rock layer we use decision of next static elasticity 
problem: consider infinite cylindrical solid with circular cut; on infinitum in two mutually 
perpendicular directions applied contractive stresses     and     corresponding known as 
“rock pressure”. In common case 1 2    that modeling no homogeneity stress state of rock 
layer. On surface of circular cut applied pressure 3 0.   

Distributions of initial stresses for this problem are [4]: 
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Here - Poisson coefficient, a - radius of hole.  
At moment 0t   happen sharply drop of pressure in hole from value 3  to 0. 
 

3 EXPLICIT SEPARATION OF MACRO FRACTURE ZONES 

 

    The entropy criterion of limiting specific dissipation is proposed as the criterion of the 
beginning of macro fracture (i.e., the beginning of formation of cracks (new free surfaces in 
material) (7). When criterion (7) is fulfilled at some point  of material, a macro crack should 
be formed there, i.e., a new free surface that will spread over the body. In point where 
criterion of fracture fulfilled is realized explicit coasts of macro discontinuity. For this we 
construct separation of nodes of network on cells boundary – internal nodes and 
corresponding them edges of cells are boundary on this put condition of free surface or 
contact  condition  depending  on  situation  [5].   Note  that  earlier  we  used  procedure  of  
bifurcation of Lagrangian network ([1, 3, 6, 7] et al).  
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Figure 1: Types of “primary” cracks. 

    Procedure of decomposition for nodes of network consists of construction “primary” 

cracks for each node and their combination with already existing cracks. Interaction between 
“primary” cracks formation cracks biggest scale. On figure 1 show variants of construction 
“primary” cracks for internal node. Type of “primary” crack determine from analysis strain 

state on adjacent edges for present node. 
 
4 RESULTS  OF  COMPUTATIONAL  SIMULATION 

 

    This task is solved by numerical modeling on Lagrangian mesh by method similar to 
Wilkins one [18]. In calculation we used next value of parameters: 0=2000 kg/m3; 
K0=14000 MPa; 0=8400 MPA; 0=100 Pa*c;=1500 Pa*c; c1=-0,09; c2=40 MPa; ; 
D

*=334,4 kJ/kg3; 0,05; A = 250 Pa*c; С = 0,00022(Pa*c)-1; ;0B * 32,5 MPauS  . 
Radius of borehole is 1a m , initial “rock” pressure, depending from coordinates ,r , 
defined from formula (8) - 3/)(0 zrp    . 
    Value of stresses, depending initial strain state are: 1 50    MPa or 1 65    MPa; 

2 75    MPa and 3 35   MPa. 
    On figure 2 present dependence of velocities different borehole points, which position     
depended angle  , from time  t . 
    On figure 3 present process of origin and growth of cracks for different value of 1 . In left 
part of figure present sequential moments of time for 1 50    MPa, in right part - for

1 65    MPa. Intensity of grey color defines level of energy dissipation, white color 
correspondence limited dissipation in criteria of fracture (7) - 4,334* D  kJ/kg3.  



Alexey B. Kiselev and Pavel P. Zacharov 
_________________________________________________________________________________________________________________ 

 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Velocity of different points of borehole. 

 

    As it show from figure 3, cracks in material origin and growth on internal surface of 
borehole and propagate deep into rock under angle near 45  to tangent of borehole contour. 
Further development of fracture process takes place on two scenarios: either crack continues 
your growth in initial direction or after some time moments it turns under angle near 90  to 
your initial moving. As it followed wait, in case 1 2    observed symmetrical not depended 
from angle   situation of fracture shear type near surface of borehole with dispersion of rock 
fragments.  
 

5  CONCLUSIONS 
 

    The authors would like to thank Russian Foundation of Basic Research (09-01-00144a) for 
financial support. 
 
 
 
 
 
 
 
 
 
  
 



Alexey B. Kiselev and Pavel P. Zacharov 
_________________________________________________________________________________________________________________ 

 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Process of cracks origin and growth. 
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