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Abstract. The purpose of this paper is report on a recently developed methodology to decou-
ple any linear dynamical system. The decoupling transformation is time-varying and reduces 
to the well known time-invariant modal transformation for linear systems that are undamped 
or classically damped. 
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1 INTRODUCTION 
It has long been recognized that coordinate coupling in damped linear systems is a con-

siderable barrier to analysis and design. In the absence of damping, a linear system possesses 
classical normal modes, which constitute a linear time-invariant coordinate transformation 
that decouples the system. This process of decoupling the equation of motion of a dynamical 
system is a time-honored procedure termed modal analysis. A damped linear system cannot 
be decoupled by modal analysis unless it also possesses a full set of classical normal modes, 
in which case the system is said to be classically damped. Rayleigh [1] showed that a system 
is classically damped if its damping matrix is a linear combination of its inertia and stiffness 
matrices. Practically speaking, classical damping means that energy dissipation is almost uni-
formly distributed throughout the system. In general, there is no reason why this condition 
should be satisfied and thus damped linear systems cannot be decoupled by modal analysis [2-
6]. In addition, it has been shown [7] that no time-invariant linear transformations in the con-
figuration space can decouple all damped systems. Even partial decoupling, i.e. simultaneous 
transformation of the coefficient matrices of the equation of motion to upper triangular forms, 
cannot be ensured with time-invariant linear transformations [8]. 

It was shown in [9, 10] that a non-classically damped system in free vibration can be trans-
formed into one with classical damping by synchronizing the phase angles in its non-
classically damped modes. This process, termed phase synchronization, generates a real time-
varying transformation that decouples the system in configuration space. Furthermore, the de-
coupling procedure reduces to modal analysis under classical damping. When additional time 
shifts induced by external forces are accounted for, the decoupling transformation for free vi-
bration can be extended to decouple forced vibration [10]. The purpose of this paper is to 
summarize the decoupling of all linear systems concisely. 

2 PROBLEM STATEMENT 
The equation of motion of an n-degree-of-freedom viscously damped linear system can 

be written as 
      (1) 

where M, C and K are real symmetric and positive definite square matrices of order n. The 
generalized coordinate q and the excitation       

€ 

f(t ) are real n-dimensional vectors. Unless the 
three coefficient matrices are diagonal, Eq. (1) is coupled. Coupling is not an inherent prop-
erty of a system but depends on the generalized coordinates used. The “classical decoupling 
problem” is concerned with the transformation of Eq. (1) into 

       (2) 
where ,  are real diagonal matrices of order n, and p and  are also real. Over the 
years, various types of decoupling approximation were employed in the analysis of damped 
systems [11-20]. Different indices of coupling were also introduced to quantify coordinate 
coupling [21-29]. However, a solution to the “classical decoupling problem” has not been re-
ported in the open literature. 

2.1 The quadratic eigenvalue problem  
Associated with system (1) is the quadratic eigenvalue problem [30-33] 

       (3) 
There are 2n eigenvalues  but there cannot be more than n linearly independent eigenvec-
tors , where . Because the matrices M, C and K are real, any complex eigen-
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values must occur in complex conjugate pairs. The quadratic eigenvalue problem plays a key 
role in decoupling system (1). In fact, all required parameters for the decoupling transforma-
tion can be obtained from the solution of the quadratic eigenvalue problem (3). 

2.2 Assumptions and possible relaxation 

It will be assumed that the 2n eigenvalues  of Eq. (3) are distinct. This assumption is 
made to streamline the introduction of new concepts and it can be readily relaxed. There will 
be little change to the exposition of decoupling under the less restrictive condition that eigen-
vectors associated with repeated eigenvalues are independent. When an eigenvalue is repeated 
m times and a full complement of m independent eigenvectors cannot be found, the eigen-
value problem (3) is said to be defective [30]. Decoupling of systems with defective eigen-
value problems is of a purely theoretical nature but is still relatively straightforward [see 9, 10 
for more details]. 

2.3 Classical modal analysis  

To set up the necessary terminology and notation, the decoupling of classically damped 
systems will be concisely surveyed. Since M, K are positive definite, solution of the symmet-
ric eigenvalue problem 

       (5) 
generates n positive eigenvalues  and n real eigenvectors  that are orthogonal with respect 
to either M or K. Upon mass normalization, the eigenvectors constitute the columns of a mo-
dal matrix . Define a modal transformation by 

       (6) 
In terms of the principal coordinate p, Eq. (1) takes the canonical form 

     (7) 
where  is the spectral matrix and  is the modal damping ma-
trix. A system is classically damped if it can be decoupled by classical modal analysis, 
whereby D is diagonal. A necessary and sufficient condition [34] for classical damping is 

. There is, of course, no particular reason why this condition should be 
satisfied. In general, a damped linear system cannot be decoupled by classical modal analysis. 

Classical modal analysis utilizes real coordinate transformations and is amenable to 
physical interpretation. Foss and others [35-37] extended classical modal analysis to a process 
of complex modal analysis in the state space to treat non-classically damped systems. How-
ever, complex modal analysis still cannot decouple all damped linear systems. A condition of 
non-defective eigenvectors in the state space must be satisfied in order for complex modal 
analysis to achieve complete decoupling. Furthermore, upon state-space transformation it is 
generally not possible to classify the 2n state variables as displacements and velocities. Physi-
cal insight is thus greatly diminished. Perhaps it is even fair to say that decoupling in configu-
ration space renders decoupling in state space unnecessary; the state of a system can always 
be obtained from displacements and their time derivatives. 

3 THE DECOUPLING OF FREE VIBRATION  

Suppose all eigenvalues of Eq. (3) are complex and distinct. The eigenvalues  of Eq. (3) 
and the corresponding eigenvectors  occur in n pairs of complex conjugates. Let 

       (8) 
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   (9) 
where , ,  and are real parameters for . The 2n complex conjugate 

eigensolutions  are sometimes referred to as the complex modes in configuration space 

[30, 38, 39]. Two eigensolutions  and  combine to generate a non-classically 
damped mode of vibration [9]. A characteristic of a non-classically damped mode is a con-
stant phase drift between system components in each mode. If suitable phase shifts are intro-
duced into each mode,  various components of the system vibrate in a synchronous manner, 
passing through their equilibrium positions at the same instant of time. In other words, the 
system is transformed into one with classical damping. A basic objective of a process termed 
phase synchronization is to do just that [9, 10]. Upon phase synchronization, the resulting 
classically damped system can be decoupled by modal analysis. When       

€ 

f(t ) = 0 and all eigen-
values  of Eq. (3) are complex, Eq. (1) can always be converted into Eq. (2), for which 

   (11) 

             (12) 
and . The free response       

€ 

q(t ) of Eq. (1) can be recovered from the free response  
of Eq. (2) by 

  (13) 

where 
              (14) 

If system (1) is non-oscillatory, both real and complex eigenvalues  of Eq. (3) occur 
simultaneously. Free vibration with mixed eigenvalues can be decoupled by dividing its ei-
gensolutions into two groups: one associated with the real eigenvalues and the other with 
complex eigenvalues. The complex eigensolutions are treated by complex conjugation and the 
real ones by real quadratic conjugation [10]. 

Specifically, let 2c eigenvalues be complex and  be real. Separate the dis-
tinct eigenvalues into two disjoint sets so that 

    (15) 
The complex eigenvalues occur as c pairs of complex conjugates and the real eigenvalues can 
be classified into primary eigenvalues (the r smallest ones) and secondary eigenvalues (the r 
largest ones). Enumerate the eigenvalues in such a way that 

  (16) 

 (17) 
The above indexing means that the first c eigenvalues are complex and the next  are 
the real secondary eigenvalues. These are followed by c complex conjugates of the first set 
and finally by r real primary eigenvalues. Simultaneous phase synchronization of all damped 
modes [9, 10] produces a decoupled system (2) for which 

  (18) 

    (19) 
The decoupling transformation is given by Eq. (13). See [10] for details on how to compute 
the parameters , ,  and  using the concept of real quadratic conjugation. 
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4 DECOUPLING OF FORCED VIBRATION  
It has been shown [9, 10] that a damped system in free vibration can be decoupled if suit-

able phase shifts are introduced into each damped mode of vibration so that all components 
are either in phase or out of phase. This process is termed phase synchronization, and its pur-
pose is to compensate for the time drifts caused by viscous damping. The required phase drifts 
are constant; that is why the time-varying decoupling transformation for free vibration in Eq. 
(13) is merely time-shifting. In the presence of an external excitation , the interplay be-
tween these time drifts and       

€ 

f(t ) generates a genuinely time-varying decoupling transforma-
tion for forced vibration [10]. 

Postulate that system (1) is decoupled into the form (2), where the diagonal matrices , 
 are still given by Eqs. (18) and (19). What is the relationship between  and ? How 

is the decoupling transformation (13) generalized? While it is possible to investigate these is-
sues in the configuration space, with the theoretical framework that has been set up it is more 
efficient to perform additional manipulations in state space. 

Let 2c eigenvalues be complex,  be real and enumerate the eigenvalues as in 
Eqs. (16) – (17). Without loss of generality, normalize the eigenvectors according to  

     (20) 
    (21) 

for       

€ 

j =1,…,n . The above normalization reduces to mass normalization if system (1) is un-
damped or classically damped [6, 9, 10]. Cast Eq. (1) in state space in the symmetric form 

   (22) 

Define a state transformation by 

  (23) 

where 
        

€ 

V = [vn | | vn], V∗ = [vn+1 | | v2n]     (24) 
     (25) 

Equation (22) becomes 

   (26) 

where  and  are given by 
    (27) 

    (28) 
and where , are given by Eqs. (18)–(19) (see [10] for details of the calculation). The 
upper and lower halves of Eq. (26) are 

    (29) 
     (30) 

Eliminate     

€ 

p2 from the above two equations to get 
   (31) 

When Eqs. (2) and (31) are compared, it becomes obvious that     

€ 

p1 can be identified with p. 
Therefore, the relationship between       

€ 

f(t ) and       

€ 

g(t ) is 
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    (32) 
Observe that     

€ 

T1,     

€ 

T2 , and hence       

€ 

g(t ) can be readily obtained from the solution of the quadratic 
eigenvalue problem (3). Upon substitution of Eq. (32) in (2), forced vibration with complex 
eigenvalues is decoupled in the configuration space.  

The relationship between the solution       

€ 

p(t ) of Eq. (2) and solution  of the original 
system (1) can be deduced from Eqs. (23), (30) and (31) 

    (33) 
The above expression represents a time-varying decoupling transformation in the configura-
tion space. A closer examination of Eq. (33) reveals that it consists of two parts. The first part, 

, accounts for time drifts caused by viscous damping in free vibration. The second 
part, , accounts for time drifts induced by the excitation       

€ 

f(t ). When       

€ 

f(t ) = 0, Eq. (33) 
reduces to  which, by direct manipulations, is the same as Eq. (13). Thus, the 
decoupling transformation (33) generalizes the decoupling transformation (13) for free vibra-
tion and, therefore, represents a general decoupling transformation for all non-defective 
linear dynamical systems. 

To cast Eq. (33) in state space, simply rewrite Eq. (23) in the form 

   (34) 

Initial conditions of       

€ 

p(t ) in Eq. (2) and       

€ 

q(t ) in the original system (1) can be connected by 
putting     

€ 

t = 0  in Eq. (34). A flowchart depicting the decoupling method is shown in Fig. 1.  
 

5 REDUCTION TO CLASSICAL MODAL ANALYSIS  
The decoupling methodology developed herein is a direct generalization of classical modal 

analysis. Without loss of generality, assume that all eigenvectors are normalized in accor-
dance with either Eqs. (20)-(21). When real and complex eigenvalues of Eq. (3) occur simul-
taneously, and the system is classically damped,   

€ 

V = V∗ = U  [10]. Using Eqs. (27) and (28), 
it can now be shown that the transformation of excitation in Eq. (32) reduces to       

€ 

g(t ) = UT f(t ), 
while the decoupling transformation in Eq. (33) simplifies to the classical modal transforma-
tion   

€ 

q = Up. Thus, the decoupling method presented reduces to classical modal analysis for 
systems that are classically damped. 

6 EFFICIENCY OF SOLUTION BY DECOUPLING 

Response calculation is probably not the most important reason for decoupling. It is the 
possibility, for example, of modal reduction and of an investigation of energy distribution 
among independent coordinates that would make decoupling worthwhile. Nevertheless, it 
may still be instructive to examine the efficiency of solution of Eq. (1) by decoupling. It will 
be assumed that the excitation       

€ 

f(t ) and response       

€ 

q(t ) are sufficiently smooth (adequate if 
twice differentiable). 
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Figure 1: Algorithm for decoupling all linear systems. 

 
One measure of the performance of an algorithm is the number of flops (floating point op-

erations) required to evaluate the response at m points within a given time window. The flops 
associated with two procedures are compared. (a) In direct numerical integration, a standard 
procedure is to recast the second-order Eq. (1) in state space as a first-order system of dimen-
sion     

€ 

2n . The state equation is then discretized, and the resulting difference equation is solved 
by matrix computations [40]. The estimate of flops of this procedure at m instants is [9, 10, 
41-43]     

€ 

N1 =160n3 +16mn2 , where n is the number of degrees of freedom and   

€ 

m >> n  in gen-
eral. (b) In solving Eq. (1) by decoupling, Eq. (2) is obtained through solution of Eq. (3) and 
evaluation of Eq. (32). Each independent decoupled system in Eq. (2) is then solved numeri-
cally at m instants with the same algorithm used in procedure (a). Subsequently, Eq. (33) is 
employed to compute the response . The estimate of flops is [9, 10, 41-43] 

    

€ 

N2 =10mn2 +16mn + 213n3 + 4n2. The variations of     

€ 

N1 and     

€ 

N2  with n are illustrated in Fig. 
2 for a window containing     

€ 

m =106 instants.  
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Figure 2: Comparison of efficiency in response calculation. 

It is observed that response calculation by decoupling generally reduces the flops and there-
fore economizes on both core memory and computing time. 

 
In fact, Fig. 2 is rather conservative because     

€ 

N2  has been estimated by using the same 
time step in the integration of all decoupled equations. If an optimal time step is individually 
chosen for each decoupled equation,     

€ 

N2  may decrease substantially. Moreover, each decou-
pled equation may be solved exactly in many applications. On the other hand, the efficiency 
of response calculation by decoupling depends on the size of the time window. In addition, 
validity of the flop estimates requires that the excitation is       

€ 

f(t ) sufficiently smooth. Distribu-
tional excitation such as an impulse leading to weak solutions (      

€ 

q(t ) less than twice differenti-
able) are excluded [44, 45]. Thus Fig. 2 should be interpreted as indicative rather than 
absolute in the comparison of efficiency. 

  

7 NUMERICAL EXAMPLE  
A four-degree-of-freedom system possessing both real and complex eigenvalues is de-

coupled to illustrate the method. The example is taken from [10]. In Eq. (1), let   

€ 

M = I, 

                            

    

€ 

C =

0.1 −0.1 0 0
−0.1 0.2 −0.1 0

0 −0.1 0.2 −0.1
0 0 −0.1 1.35

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

,  

    

€ 

K =

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1.1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

                       (35) 

and       

€ 

f(t ) = [0,0,0,1]T te−0.3t sin2t  and assume zero initial conditions     

€ 

q(0) = 0 , . This 
system is non-classically damped and, therefore, can only be decoupled by the method pre-
sented herein. Solution of the quadratic eigenvalue problem (3) yields     

€ 

c = 3 pairs of complex 
conjugate and     

€ 

r =1 pairs of real quadratic conjugate eigenvalues and eigenvectors [10]. From 
Eqs. (27) and (28), 

    

€ 

T1 =

−0.38 0.53 0.30 0.70
−0.05 −0.45 −0.70 0.68
0.52 −0.66 0.64 0.64
1.11 0.37 −0.16 0.57

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

    (36) 

Direct Numerical Integration 

Decoupling 
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€ 

T2 =

0.49 −0.07 −0.02 0.53
0.71 −0.07 0.03 0.31
0.90 0.15 0.02 −0.17
0.70 0.27 −0.09 −0.93

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

    (37) 

It can be checked that the decoupled  system is given by 
  (38) 

  (39) 

      

€ 

g(t ) = e−0.3t

1.4t cos(2t ) + (0.70 + 0.90t )sin(2t )
0.54t cos(2t ) + (0.27 + 0.29t )sin(2t )
−0.18t cos(2t ) − (0.09 + 0.13t )sin(2t )
−1.86t cos(2t ) + (−0.93+ 0.85t )sin(2t )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

   (40) 

\with initial conditions     

€ 

p(0) = 0 , . The decoupled system can be readily solved and 
solution  of the original       

€ 

(M, C, K, f(t ))  system can be recovered from       

€ 

p(t ) by Eq. (33). 
As shown in Fig. 3,       

€ 

g(t ),       

€ 

p(t ), and       

€ 

q(t ) are all oscillatory. 

 
Figure 3: Simulation results. 

It can be verified that       

€ 

q(t ), whether generated by decoupling or by direct numerical integra-
tion, is the same. 

8 CONLUSIONS  

A method has been presented to decouple all linear dynamical systems under viscous 
damping. The decoupling methodology developed herein possesses ample physical insight 
and it also lends itself to numerical computations. If the linear system is in free vibration, the 
time varying decoupling transformation in Eq. (33) reduces to a time shifting transformation 
in Eq. (13). Under classical damping, the decoupling method reduces to modal analysis. Ma-
jor findings of this paper are summarized in the following statements. 

 
1. In free or forced vibration, all parameters required for the decoupling of a linear system 

are obtained through the solution of a quadratic eigenvalue problem. 
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2. Any viscously damped linear system (no restrictions) can be completely decoupled. A 
flowchart outlining the decoupling procedure is given in Fig. 1. 

3. While damped linear systems are decoupled in the configuration space, transformations of 
initial conditions are prescribed in state space (otherwise initial values are connected at 
different time instants due to phase synchronization). 

 
To streamline the introduction of new concepts, most formulas have been established with 

the assumption that eigenvalues of the quadratic eigenvalue problem (3) are distinct. These 
formulas remain unchanged when Eq. (3) is non-defective (each repeated eigenvalue pos-
sesses a full complement of independent eigenvectors). However, a system for which Eq. (3) 
is defective can still be decoupled by the method presented herein. Due to the lack of practical 
importance of defective systems (a system is non-defective with probability 1) and because 
the mathematics becomes quite involved, details on the decoupling of defective systems are 
deferred to a future paper on general mode-by-mode transformations  
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