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Abstract. Passive strategies based on the introduction of energy dissipating devices into the 

structures have received considerable attention in recent years. Within this framework, as re-

liable and cheap energy-dissipation devices, viscous fluid dampers have been largely used in 

seismic protection of industrial machines, technical equipments, buildings and bridges. Since 

the versatility of this passive protection system satisfactorily meets a wide range of require-

ments, a reliable identification of their nonlinear mechanical behavior is of outstanding im-

portance. This paper focuses on the parametric identification of fractional derivative based 

models for nonlinear viscous dampers by means of non-classical methods, which are uncon-

ventional algorithms whose inner work is based on socially, physically and/or biologically 

inspired paradigms. Non-classical strategies are potentially powerful tools for solving com-

plex identification problems because of their start-point independence, noise robustness and 

the capability in looking for the best solution in a global way. In contrast, it is important to 

highlight that they typically possess weak forms of convergence. For better assessing the cor-

rectness of some non-classical methods in parametric identification of viscous dampers, we 

perform a large comparative analysis which involve the following soft computing based tech-

niques: a multi-species genetic algorithm, six standard differential evolution algorithms and 

four swarm intelligence based algorithms (including a chaotic particle swarm optimization 

algorithm). A numerical study is initially conducted in order to investigate the general relia-

bility of these methods. Moreover, the paper also provides some results about the parametric 

identification of nonlinear viscous dampers by using experimental data. A critical review of 

the obtained evidences is given in order to provide useful guidelines for similar engineering 

applications. 
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1 INTRODUCTION 

Existing strategies for enhancing structural performances and safety against natural and 

manmade hazards can be grouped into three broad areas: base isolation, passive energy dissi-

pation and active control. Passive energy dissipation systems can be realized by using a very 

wide range of materials and devices for enhancing damping, stiffness and strength. They can 

be used both for seismic hazard mitigation and for rehabilitation of aging or deficient struc-

tures. These devices generally operate on principles such as frictional sliding, yielding of met-

als, phase transformation in metals, deformation of viscoelastic solids or fluids and fluid 

orificing [1]. In this paper, the attention is focused on viscous damper devices whose most 

interesting features are: (i) low maintenance costs; (ii) usability for several severe earthquakes 

without damage; and (iii) forces exerted by the damper devices do not increase the stress in 

the structural system, being out of phase with the elastic forces. A viscous fluid damper typi-

cally consists of a piston within a damper housing filled with a compound of silicone or simi-

lar type of oil. Through a number of small orifices, the fluid pass from one side of the piston 

to the other: therefore, this device is able to dissipate energy through the movement of a pis-

ton in a highly viscous fluid based on the concept of fluid orificing [1]. Nowadays, a large 

number of civil engineering structures (buildings as well as bridges) is equipped with viscous 

fluid dampers in order to control seismic or wind induced motions and thermal expansions.  

Since the applications of viscous dampers is growing very fast, their characteristics must 

be carefully investigated in order to provide a reliable support for designing an efficient pro-

tection strategy. Because of their inherent nonlinear behavior, condition assessment tech-

niques require appropriate identification techniques. For instance, several identification 

approaches, both parametric and nonparametric, are compared in [2] by using real data carried 

out from full-scale nonlinear viscous dampers commonly used with large flexible bridges. 

About the parametric techniques, in [2] are explored the capability of the Adaptive Random 

Search: to this end, the authors solved an optimization problem in which the numerical values 

of the unknown model parameters were estimated by minimizing an objective function based 

on the normalized mean square error between the measured and identified damper responses. 

Since its weak form of convergence, the Adaptive Random Search belongs to the class of 

non-classical identification techniques [3], which are unconventional numerical identification 

methods mostly based on socially, physically and/or biologically inspired paradigms (i.e., ant 

colony based algorithms, artificial neural networks, differential evolution algorithms, genetic 

algorithms, genetic programming, particle swarm optimization algorithms, etc.).  

This paper provides a comprehensive investigation about the parametric identification of 

viscous dampers via non-classical methods. To this end, we perform a large comparative 

analysis in which the following soft computing based techniques are examined: a special mul-

ti-species genetic algorithm, six standard differential evolution algorithms and four swarm 

intelligence based algorithms (including a chaotic particle swarm optimization algorithm). A 

numerical study is initially conducted in order to investigate the general reliability of these 

methods. Moreover, the paper also provides some results about the parametric identification 

of a full-scale nonlinear viscous damper by using experimental data. A critical review of the 

obtained evidences is given in order to provide useful guidelines for similar engineering ap-

plications. 

2 PARAMETRIC IDENTIFICATION OF VISCOUS DAMPERS 

The application of non-classical methods for the parametric identification of viscous 

dampers requires (i) the definition of an appropriate single-degree-of-freedom mechanical 

model and (ii) the formalization of the objective (or cost) function to be minimized.    
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2.1 Dynamic models 

The damper effect is an output resistive force, therefore it acts in the opposite direction to 

that of the relative velocity between the ends of the damper device itself. The typical damping 

force ψd is: 

  sgn
d

C y y



   (1) 

where y is the displacement time-history (the time variable t is omitted for the sake of con-

ciseness, the upper dots indicate the time-derivative). Moreover, sgn[·] is the signum function, 

Cα is the damping coefficient and α is the damping law exponent. The value of α for seismic 

applications ranges between 0.10 and 0.50 (in this way the force rises very fast for small ve-

locity values and becomes almost constant for large velocity values). Regarding the elastic 

force ψe, both linear and parabolic models were investigated in [4]: 

 
1e

K y   (2) 

 2

2 1 0e
K y K y K     (3) 

in which K1 is the elastic stiffness, K2 and K0 are two constants. In [4] is stated that the para-

bolic function reproduces the shape of the test cycles more precisely, but the linear one may 

be preferred because it is more simple and yields a comparable energy balance. By combining 

Eq. (1) and Eq. (2), the equation of motion of a fractional viscous damper system subjected to 

a time-varying force p is [4]: 

   1
sgnMy C y y K y p




    (4) 

where M is the effective mass. If the parabolic model given by Eq. (3) is taken into account, 

then the equation of motion becomes [4]: 

    2

2 1 0
sgnMy C y y K y K y K p




      (5) 

In [5] are considered a fraction viscous model and a linear one as follows: 

  1 1
sgnMy C y C y y K y p




     (6) 

where C1 is the internal damping coefficient.    

The system response can be determined as solution of the considered equation of the mo-

tion by using standard numerical time-marching techniques if the initial conditions and the 

values of the system parameters are known. 

2.2 Parametric identification   

The model parameters x of the viscous damper are identified by solving the following sin-

gle-objective optimization problem : 

 
  min

       s.t. l u

f

 

x
x

x x x

 (7) 

in which x
l
 and x

u
 are the lower and upper bounds of the system parameters, respectively.   

The objective or cost function f(x) is:  

     *

2
1

100 S

s s
s

y

f y y
S 

 x x  (8) 
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where ys is the measured displacement, ys
* is the computed displacement, S is the number of 

data points (s is a generic sample index) and σs
2
. The cost function in Eq. (8) coincides with 

that in [2] as the weight for the velocity-based addend is equal to zero. In fact, although the 

information regarding the velocity response may help the parametric identification, it intro-

duces some additional complications. First, the velocity response is not typically measured, so 

that it needs to be calculated from the displacement response. Second, the weights of a mixed 

displacement-velocity cost function should be tuned for better matching the experimental data, 

and thus it requires preliminary user-supervised runs. On the other hand, the objective func-

tion in Eq. (8) can be directly used with experimental data without preliminary runs. 

The Adaptive Random Search was used in [2] to solve a single-objective optimization 

problem as in Eq. (7) in order to identify the system parameter x. In this paper, we perform 

comparative analyses involving differential evolution, particle swarm optimization and genet-

ic algorithm. 

3 IDENTIFICATION VIA DIFFERENTIAL EVOLUTION 

Differential evolution algorithm (DEA) is a relatively recent stochastic, population-based 

global optimization method whose positive features are attracting the interest of several re-

searches in the field of the applied sciences. Different from traditional evolutionary algo-

rithms, this optimizer is completely self-organizing and requires few lines of code in most of 

the existing programming languages. Moreover, its functionality requires a small set of em-

bedded control parameters, which makes it easy to use for non-experts. 

3.1 Mutation operators 

The standard version of the DEA [1] uses the differences between randomly selected indi-

viduals as the source of random variations for a third individual referred to as the target vector. 

Trial solutions are generated by adding weighted difference vectors to the target vector. This 

process is dubbed mutation operator: its main goal is to enable diversity in the current popula-

tion as well as “to move” the individuals in such a way a better result is expected. By compu-

ting the differences between two individuals randomly chosen from the population, the 

algorithm estimates the gradient in that zone rather than in a single point of the search space. 

Let us consider 
k
xi={

k
xi1,…,

k
xij,…,

k
xin} the ith individual (with i=1,…,N) at iteration k. The 

initial population 
0
xi for i=1,…,N is defined by generating randomly the collection of N solu-

tions within the specified search space. During the iteration k+1, for each individual 
k
xi a mu-

tation vector 
(k+1)

zi is computed by using one of the following alternatives: 

 
   1 1

1 2 3

k k k k

i r r r
F


  z x x x  (9) 

 
   1 1

1 2

k k k k

i best r r
F


  z x x x  (10) 

 
     1 2 1

1 2

k k k k k k

i i best i r r
F F


    z x x x x x  (11) 

 
     1 2 1

1 2 3 4

k k k k k k

i best r r r r
F F


    z x x x x x  (12) 

 
     1 2 1

1 2 3 4 5

k k k k k k

i r r r r r
F F


    z x x x x x  (13) 

where r1, r2, r3 and r4 denote integers randomly selected within the set {1,…,i-1,i+1,…,N} 

such that r1≠r2≠r3≠r4. The individual 
k
xbest is the best performer in the population at iteration 

k. The coefficients F
1
 and F

2
 are the so-called mutation coefficients and they are real positive 

constants whose typical values are in the range [0.40,1.00], 0.50 in our numerical applications. 
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These parameters control the amplification level of the mutation (for this reason they are also 

dubbed “scale factors”). 

3.2 Crossover operator 

The crossover follows the mutation phase. For each mutated vector 
(k+1)

zi a trial vector 
(k+1)

ui
 
(offspring) is generated by using the following so-called binomial crossover: 

 
 

   1

1       1,

       

k c

k ij

ij k

ij

z if q p or j randint n
u

x otherwise




  

 


 (14) 

where q is a random number generated by using the uniform probability density function in 

the range [0,1]. The parameter p
c
 is the probability of crossover and it takes values between 0 

and 1 (usually, 0.50). Moreover, randint(1,n) is an integer randomly selected within the set 

{1,…,n} and it is adopted to ensure that at least one parameter is taken into account for con-

structing the vector 
(k+1)

ui. 

3.3 Selection operator 

An opportune strategy is needed to ensure the feasibility of the obtained solutions in Eq. 

(14), that means the fulfillment of both lower and upper bounds of the search space: in this 

paper, if a vector out-of-range is obtained, then its projection on the prescribed interval is con-

sidered (so-called projection scheme). Subsequently, the selection operator is performed by 

means of a very simple one-to-one competition scheme between 
(k+1)

ui and 
(k+1)

xi as follows: 

 
 

       1 1 1

1
    

       

k k k

i i ik

i
k

i

if f f

otherwise

  


 

 


u u x
x

x
 (15) 

Therefore the winner 
(k+1)

xi in the selection stage is the best performer between the parent 

individual 
k
xi and its trial one 

(k+1)
ui. The output of this operator is a new population for the 

next generation, unless a stopping criteria has not been fulfilled. In this study, we will stop the 

evolutionary search once a maximum number of iterations L is achieved. 

3.4 An adaptive mutation operator 

In [7] is presented a mutation operator in which only one control parameter is required and 

the mutation coefficients are adaptive. The mutation operator proposed in [7] deals with the 

following revised version of Eq. (11): 

 
     1

3, 3 1, 2 1 2
  

k k k k k k k k

i i r i r i r r r r
F F if k L


     z x x x x x  (16) 

and 

 
     1

1 , 1, 2 1 2
  

k k k k k k k k

i r best i best i r r r r
F F if k L


     z x x x x x  (17) 

where κ is the only one control parameter. The adaptive mutation coefficients in Eq. (16) and 

in Eq. (17) are calculated as follows: 

 
   3

3,

max min

max ,0.5

k k

r ik

r i k k

f f
F

f f

  
  

  

x x
 (18) 
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   

   

1 2

max min

1, 2

1 2

max min

max ,0.5    

                    

k k

r r

k k

k

r r
k k

r r

k k

f f
if k L

f f
F

f f
if k L

f f





   
  

    
 






x x

x x
 (19) 

 
 min

,

max min

k k

ik

best i k k

f f
F

f f






x
 (20) 

in which: 

 
  

  

min
1,...,

max
1,...,

min    

max

k k

i
i N

k k

i
i N

f f

f f









x

x
 (21) 

Taking into account this operator, the mutation occurs in two distinct ways. The first one 

takes place  when k≤κL  and its goal is to help the exploration of the search space. In this ef-

fort, the weighted difference vectors in Eq. (16) only involves randomly selected individuals 

and the mutation coefficients are forced to be greater than 0.5, see Eq. (18)  and the first 

equality in Eq. (19). Once k>κL, the mutation scheme proposed in Eq. (19) is performed. In 

this case, the current best individual 
k
xbest is taken into account. Substantially, the goal of this 

alternative scheme is to keep track of the current best performer within the population. More-

over, an improved exploitation can be achieved by removing the lower bounds for the adopted 

mutation coefficients (therefore numerical values less than 0.50 are accepted at this time). 

However, there is not rigid separation between exploration and exploitation because the nu-

merical values of the scale factors are dynamically adjusted during the evolutionary search 

(adaptive property): for instance, if the exploration of the search space is not concluded for 

k≤κL then the numerical values of the mutation remain sensibly large and the global recogni-

tion is not penalized. Our numerical analyses – on both mathematical and engineering prob-

lems – demonstrate that a good value for κ (the only parameter of the proposed mutation 

operator) should be selected within 0.40 and 0.60, κ=0.50 in this paper. 

3.5 A free-parameter crossover operator 

The binomial scheme in Eq. (14) was replaced in [7] with the following one: 

 
        1 1 1 1k k k kk

i i i i i

   
    u q x 1 q z  (22) 

where 
(k+1)

qi is a vector whose n components are random numbers generated by using the uni-

form probability density functions in the range [0,1]. Moreover, 1={11,…,1j,…,1n }. The re-

sults of the binomial crossover in Eq. (14) are vertex points of the hypercube defined by 
(k+1)

zi 

and 
(k+1)

xi. Similarly, these vertex points are possible solutions of the crossover operator pre-

sented in Eq. (22) when 
(k+1)

qij→0 or 
(k+1)

qij→1 for each j=1,…,n. Additionally, this crossover 

operator allows the exploration of the inner space bounded by this hypercube. It is evident 

that the probability of reproduction is not required for performing the proposed crossover, and 

thus Eq. (22) is a free-parameter operator. 
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4 IDENTIFICATION VIA PARTICLE SWARM OPTIMZIATION 

Based on the swarm intelligence theory, two different categories of optimizers can be for-

mulated: 

 Particle swarm optimization algorithms (PSOAs) in which is assumed that a Newtonian 

dynamic regulates the movement of the particles. Therefore, position and velocity can be 

determined simultaneously.  

 Quantum-behaved particle swarm optimization algorithms (Q-PSOAs) in which the 

Newtonian hypothesis is rejected. In this case, the classical mechanic is replaced with the 

quantum mechanics in which the term “trajectory” is meaningless [8]. 

The first class of PSOAs is the object of investigation in this paper. 

4.1 General model 

The ith particle (with i=1,…,N) at iteration k has two attributes, that are its velocity 
k
vi={

k
vi1,…, 

k
vij,…,

k
vin} and position 

k
xi={

k
xi1,…,

k
xij,…,

k
xin}. To protect the cohesion of the 

swarm the velocity 
k
vij is forced to be (in absolute value) less than a maximum velocity vj

max
 

with v
max

={v1
max

,…, vj
max

,…,vn
max

}. Typically, it is assumed v
max

=γ(x
u
 - x

l
)/τ (the time factor τ 

= 1 is introduced to assign a physical meaning to the formula) but there is not sufficient de-

gree of uniformity about γ whose numerical value can vary in a large interval (usually its val-

ue is 0.50). The initial positions 
0
xi for i=1,…,N are defined by generating randomly the 

collection of N solutions within the assigned search space. Moreover, 
0
vij is randomly generat-

ed using an uniform distribution between -vj
max

 and +vj
max

. At iteration k+1 the velocity 
(k+1)

vi 

and the position 
(k+1)

xi are evaluated as follows [9]: 

 
         1 1 1

1 1 2 2

k k kk k Pb k k Gb k

i i i i i i i
w c c

  
      v v r x x r x x  (23) 

 
     1 1

   1
k kk

i i i
 

 
  x x v  (24) 

in which w is the inertia weight whereas c1 and c2 are the so-called acceleration factors (they 

are called cognitive and social parameter, respectively). In Eq. (23), 
(k+1)

r1i and 
(k+1)

r2i are vec-

tors whose n terms are random numbers uniformly distributed between zero and one, the 

symbol × denotes the term-by-term multiplication. The superscripts on the left and the sub-

scripts on the right denote that a different couple of random vectors is needed for each particle 

at any iteration. The symbol 
k
xi

Pb
 denotes the best previous position of the ith particle (also 

known as pbest):  

 

      1 1
    

        

k kPb k Pb

i i ik Pb

i
k

i

if f f

otherwise

  
 


x x x
x

x
 (25) 

given that 
0
xi

Pb
=

0
xi. According to the adopted definition for 

k
x

Gb
, there are two versions of 

PSOAs. If 
k
x

Gb
 is the best position among all the particles in the swarm (also known as gbest) 

such a version is called global PSOA (and the swarm is said to be fully informed or fully con-

nected). On the other hand, if 
k
x

Gb
 is evaluated on a smaller number of adjacent particles (also 

known as lbest, 
k
x

Lb
) we have a local PSOA. In this paper, we will consider that all particles 

share information with each other about the best performer of the swarm, so that 

   
1,...,

arg mink Gb k Pb

i
i N

f


x x  (26) 
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The check on the maximum admissible velocity for each particle i is performed at iteration 

k in the following manner: 

 

max maxsgn     
1,

                  

k k

ij j ij jk

ij k

ij

v v if v v
v j n

v otherwise

       


 (27) 

Another check is needed to verify that the particle is within the feasible search space: 

  

 

 

 

,                  

, , 0             1,

, 0    

k k l k u

ij ij j j j

k k k l k k l

ij ij ij j ij j j

k u k

ij j ij

x v if x x x

x v x x v if x x j n

x x v otherwise

  


     


 

 (28) 

In Eq. (28), the unfeasible particle’s velocity is fixed to zero for the next iteration to avoid 

considering any points outside the search space.  

A typical operator  (called “craziness operator”) is performed to increase the direction di-

versity in the swarm. Specifically, the adopted version for the craziness operator works on the 

particle’s velocity only. Assigned a probability of craziness Pcr, the particle’s velocity in Eq. 

(27) is replaced as follows:   

 
   1 max max ,  1,
k

cr ij j j
if r P v U v v j n


      (29) 

in which r is a uniform random number between 0 and 1, U(·) is the uniform probability den-

sity function. Once the particle’s velocity is assigned by means of Eq. (29), a new position 
(k+1)

xi is calculated for the particle by including this result in Eq. (24). A high value for Pcr re-

sults in (ineffective) pure random search, therefore its value should be less than 0.1 (0.05 in 

this study). Following iteratively this simple set of instructions, the swarm is expected to “fly” 

toward the global optimum of the problem. In our studies, the routine is stopped once a max-

imum number of iterations L is achieved. 

4.2 Inertia weight and acceleration factors 

The constriction factor χ is alternative to the use of the static inertia weight, initially pro-

posed by [10] to replace the v
max

 clamping. The constriction model describes the way of 

choosing w, c1 and c2 as follows:  

 

         1 1 1

1 1 2 2

2

1 2

2
     

2 4

4

k k kk k Pb k k Gb k

i i i i i i i
c c

c c




  



          


  

  

v v r x x r x x

 (30) 

The new particle’s position is computed as indicated in Eq. (24). Very typical values for 

this model are c1=c2=2.05, that is χ=0.73. 

The model given by Eq. (23) can be modified by assuming both inertia weight
 
and acceler-

ation factors as dynamic parameters, that is: w=
k
w, c1=

k
c1, c2=

k
c2. In [11] is proposed a linear-

ly decreasing inertia weight:  

  0k L LL k
w w w w

L


    (31) 
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where 
0
w and 

L
w are the initial and final values of the inertia weight (typically 0.9 and 0.4 re-

spectively). Similarly, in [12] are proposed linearly iteration-dependent models for the accel-

eration factors: 

 

 

 

0

1 1 1 1

0

2 2 2 2

   k L L

k L L

L k
c c c c

L

L k
c c c c

L


  


  

 (32) 

In several papers, 
k
c1 changes from 2.5 to 0.5 and 

k
c2 from 0.5 to 2.5. 

4.3 Chaotic particle swarm optimization 

One of the major drawbacks of the PSOA is its premature convergence, especially for 

search spaces with several local optima. In order to overcome this problem, some researchers 

proposed to introduce chaotic maps with certainty, ergodicity and pseudo-randomness proper-

ty into PSOA so as to improve the global convergence [13]. Moreover, in [8] and [14] is stat-

ed that – due to the non-repetition of chaos – chaos-based optimization algorithms can carry 

out overall searches at higher speeds than stochastic ergodic searches that depend on probabil-

ities. The ways in which the chaos entries into PSOAs are different but in this study we con-

sider the most diffused one: in detail, we assume that chaotic maps are adopted to select the 

numerical values for the parameters of the particle’s velocity in Eq. (23). Different numerical 

studies have been conducted for choosing the better chaotic maps. Looking for a synthesis of 

the documented results, we assume that the inertia weight is updated by adopting the logistic 

map [13]: 

 
     1

1     0,1
k k k kw w w with w


    (33) 

where λ is assumed equal to 4 to obtain ergodicity in (0,1). The upper symbol ~ indicates that 

the corresponding quantity is evaluated by means of an opportune chaotic map. In our appli-

cations, the adopted value of the chaotic inertia weight are scaled within the interval 

[0.40,0.90]. About the acceleration factors, in [14] is proposed the use of the Zaslavskii map: 

 
   1 1

1 1 2
mod ,1

k kk    
       (34) 

 
   1

2 1 2
cos 2

k k ke    
    (35) 

in which mod[·] is the modulus (signed remainder after division). The use of Zaslavskii map 

has been theoretically justified in [14] for virtue of its ergodicity and unpredictability, since a 

strange attractor with large Lyapunov exponent can be found for ν=400, ρ=3 and δ=12.6695 

(in this case, 
k
ζ2[-1.0512,1.0512]). Therefore, in [14] is stated that a Zaslavskii map-based 

chaotic PSOA should be more capable of escaping from local optima than random search. In 

our applications, both chaotic acceleration factors are functions based on the results of Eq. 

(35), but final values are scaled within the interval [0.50,2.50].  

4.4 Passive congregation 

The dynamic of natural swarms can be modeled by taking into account two grouping forms 

[15]: 

 Aggregation, that is a grouping by environmental forces. Two types of aggregation forms 

can be identified. The passive aggregation is a passive grouping due to physical phenom-
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ena (i.e., transport caused by water currents) whereas the active aggregation is a grouping 

by attractive resources (i.e., food or space within the environment);   

 Congregation, that is a grouping by social forces (it depends on the group itself and not 

on the environment). Also in this case two different forms of congregation can be ana-

lyzed. The passive congregation is the attraction between members of the group without 

the existence of observable social behaviors and therefore it looks as a random phenome-

non. On the other hand, the social congregation happens under active information trans-

fer, so that the behavior of the group depends on the relations among the members of the 

group. 

It has been pointed out in [15] that the third addend of the standard PSOA in Eq. (23) mod-

els an active aggregation rather than a passive congregation because 
k
xGb can be regarded (us-

ing a biologic metaphor) as “the place with most food”. Therefore, the standard model in Eq. 

(23) does not incorporate a congregation form. Starting from this consideration, in [15] is 

proposed a new rule for updating the particle’s velocity: by including a passive congregation 

term the information sharing within the swarm may be improved and the recognition of the 

search space as well. Accounting for the passive congregation, the particle’s velocity is updat-

ed as follows [15]: 

 
             1 1 1 1

1 1 2 2 3 3

k k k kk k Pb k k Gb k k k

i i i i i i i i rand i
w c c c

   
         v v r x x r x x r x x  (36) 

in which 
k
xrand is a particle selected randomly from the swarm, 

(k+1)
r3i is a vector whose terms 

are random numbers uniformly distributed between zero and one and c3 is another accelera-

tion factor (called passive congregation coefficient, a constant positive real value). The adopt-

ed (constant) numerical values for the control parameters in Eq. (36) are taken from [15].  

5 IDENTIFICATION VIA GENETIC ALGORITHM 

Genetic algorithms are well known non-classical techniques for parametric identification: dur-

ing a succession of generations, these methods generate new points in the admissible search 

space by applying operators on the current solutions set and “statistically” moving toward 

more optimal places in virtue of the Darwinian strife for survival. A detailed state-of-the-art 

review about genetic algorithm based mechanical system identification can be found in [16].   

A modified real-coded genetic algorithm [17] for parametric identification of mechanical 

system is considered in this paper. The algorithm – whose acronym is MGAR – utilizes sev-

eral subpopulations and a migration operator with a ring topology is periodically performed to 

allow the interaction between them. For each subpopulation, a specialized medley of recent 

genetic operators (crossover and mutation) has been adopted and is briefly discussed. The fi-

nal algorithm includes an operator based on the auto-adaptive asexual reproduction of the best 

individual in the current subpopulation. This latter was introduced to avoid a long stagnation 

at the start of the evolutionary process due to insufficient exploration as well as to attempt an 

improved local exploration around the current best solution at the end of the search. The orig-

inal algorithm included a search space reduction technique, but it is not considered in this pa-

per because of the small number of unknown parameters to be identified. This algorithm was 

successfully adopted for nonlinear [17] and large linear system identification [18]. The inter-

ested reader can refer to [17] and [18] for more information about it and the adopted numeri-

cal values for the embedded control parameters. 
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6 NUMERICAL RESULTS 

A large numerical investigation is conducted to assess the performances of the above pre-

sented non-classical identification techniques for parametric identification of a nonlinear vis-

cous damper subject to various dynamic loads (harmonic and earthquake loading). The effect 

of the noise contamination in the reference response is also studied.       

6.1 Problem data and non-classical identification methods under investigation 

A list of the considered non-classical identification methods is given in Tab. 1. 

 

Algorithm Short description 

DEA01 
A DEA whose mutation operator is given by Eq. (9) and with 

binomial crossover as in Eq. (14)  

DEA02 
A DEA whose mutation operator is given by Eq. (10) and with 

binomial crossover as in Eq. (14) 

DEA03 
A DEA whose mutation operator is given by Eq. (11) and with 

binomial crossover as in Eq. (14) 

DEA04 
A DEA whose mutation operator is given by Eq. (12) and with 

binomial crossover as in Eq. (14) 

DEA05 
A DEA whose mutation operator is given by Eq. (13) and with 

binomial crossover as in Eq. (14) 

DEA06 
A DEA with adaptive mutation – as in Eq. (16) and Eq. (17) – 

and  a free-parameter crossover given by Eq. (22), see [7] 

PSOA01 
A PSOA whose velocity model is Eq. (23), with inertia weight 

as in Eq. (31), social and cognitive factors as in Eq. (32) 

PSOA02 
A PSOA in which the velocity updating rule (based on the use 

of the constriction factor) is given by Eq. (30) 

PSOA03 
A PSOA based on the use of chaotic maps (so-called chaotic 

PSOA) for both inertia weight and acceleration factors 

PSOA04 
A PSOA with passive congregation in which the velocity up-

dating rule is given by Eq. (36) 

MGAR 
A modified multi-species real-coded genetic algorithm with 

specialized operators for each subpopulation, see [17] and [18] 

 

Table 1: List of non-classical identification methods under investigation. 

The parametric identification of the viscous damper is performed by solving the optimiza-

tion problem in Eq. (7) whose cost function is given in Eq. (8). For this numerical investiga-

tion, the adopted mechanical model is that in Eq. (6) and the numerical values of the involved 

parameters are taken from [5]: M=1000, C1=100, Cα=400, K1=1000 and α=0.20. The set of 

parameters to be identified is x={M, C1, K1, Cα, α} and x* is its true real value. Lower and up-

per bounds are, x
l
=0.10x* and x

u
=2.00x*, respectively. The population size and the maximum 

number of iterations are N=50 and L=400, respectively.  

6.2 Nonlinear viscous damper subject to harmonic base motion 

The viscous damper is subject to harmonic base motion:  

    max sin
g

p t Ma t    (37) 
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in which  ag
max

=0.25g (g is the gravity acceleration) and Ω is given in Tab. 2 as function of 

the natural frequency of the system, that is ω = √(K1/M).   

Initial velocity and initial displacement are both equal to zero. The total number of samples 

is S = 2000. Unit of measures are arbitrary but consistent. 

 

Load case Ω/ω 

L1 1.00 

L2 0.50 

L3 2.00 

 

Table 2: Load cases. 

Mean results over thirty distinct runs (that is, with different initial populations) are present-

ed in Fig. 1 (for M), Fig. 2 (for C1), Fig. 3 (for K1), Fig. 4 (for Cα) and Fig. 5 (for α). The 

black horizontal solid line denotes the true parameter value. 

A general overview of the obtained results leads to the following considerations: 

 Non-classical identification methods provide an effective way for the parametric identifi-

cation of nonlinear viscous dampers subject to harmonic-type dynamic loading, because 

the final errors are acceptable for practical applications. 

 The load case L1 causes the most critical situation for the parametric identification of 

nonlinear viscous dampers. This is may be imputable to the use of harmonic excitation 

whose frequency coincides with that of the viscous damper. 

 The DEA06 and MGAR are the best competitor for this numerical application because 

the identified parametric values are very close to the exact solution. Their performance in 

the parametric identification are strongly better than the others for the load case L1.  

 

Figure 1: Identification results for M. 
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However, it was observed that all non-classical methods can achieve the exact solution of 

the identification problem by increasing the number of objective function evaluations. In this 

perspective, DEA06 and MGAR are more competitive than the others from a computational 

standpoint.  

A more detailed inspection of the plotted results may provide further practical information. 

For instance, it appears that DEAs and PSOAs lead to comparable final results. There are no 

significant differences within the standard DEAs. On the other hand, the chaotic PSOA (la-

beled as PSOA03 in Tab. 01) is slightly better than the others.  

 

Figure 2: Identification results for C1. 

 

Figure 3: Identification results for K1. 
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The most critical parameters to be identified is Cα: as it can be seen in Fig. 4, its numerical 

value for the load case L1 is approximately identified by the most of the investigated tech-

niques (not so good results are obtained by using DEA01, DEA05, PSOA01, PSOA02 and 

PSOA04). For the most critical loading condition (L1), it is observed that (i) the identified 

values of M, C1 and K1 (mean values over thirty runs) are greater than the exact ones whereas 

(ii) the identified values of Cα (mean values over thirty runs) are lower than the exact ones.  

 

Figure 4: Identification results for Cα. 

 

Figure 5: Identification results for α. 
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Some samples of the convergence histories for DEA06 are shown in Fig. 6 (for load case 

L1), Fig. 7 (for load case L2) and Fig. 8 (for load case L3). As above, the black horizontal sol-

id line denotes the true parameter value. The objective function shows a small number of 

stagnations (number of iterations without improvements). This means that the exploration 

phase of the evolutionary search for DEA06 is very efficient. 

 

Figure 6: A sample of the convergence histories for DEA06 (load case L1). 

 

Figure 7: A sample of the convergence histories for DEA06 (load case L2). 
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Figure 8: A sample of the convergence histories for DEA06 (load case L3). 

Convergence histories of the model parameters confirm the effectiveness of DEA06 in par-

ametric identification of the nonlinear viscous damper because a quasi exact results is 

achieved once 200÷300 iterations are completed. As a consequence, the total elaboration time 

can be reduced without jeopardizing the correctness of the identification process.   

6.3 Nonlinear viscous damper subject to earthquake motion 

The same nonlinear viscous dampers was identified under, both, white random noise and 

earthquake excitation. Using the non-classical methods under investigation (as they are listed 

in Tab. 1), all the model parameters were exactly identified  (i.e., to four decimal digits). It 

has been observed that the final accuracy is slightly better than the obtained one for harmonic 

loading. It is an expected results, because the efficiency of the identification depends on the 

information contained in the input-output data: in this sense, harmonic loads with a low fre-

quencies content are a limited excitation source. Herein, only results for a viscous damper 

subject to a real earthquake record are shown. Thus, the dynamic load is:  

    g
p t Ma t   (38) 

in which ag
 
is the adopted earthquake record (for this numerical application, the El Centro 

earthquake is considered). Moreover, in order to study the detrimental effect of the noise con-

tamination, a noisy reference system response is taken into account. A uniform-type noise was 

considered whit a noise-to-signal-ration (NSR) equal to 15%. The obtained noisy signal has 

not been subject to de-noising.  

The results – summarized in Fig. 9 – demonstrate that DEA06 is relatively insensitive to 

moderate noise levels. The noise robustness of non-classical identification methods is well 

known in the current literature and it depends on the implicit parallelism in such numerical 

techniques [7][17]. Comparing the identification results by using a noise-free (solid lines in 

Fig. 9) and a noisy reference response, it is observed that: 
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 Because of the noise contamination, the minimum value of the objective function in Eq. 

(8) is not equal to zero. The final minimum value of the objective function under noisy 

signals may be very far from the ideal one (that is, equal to zero). 

 The role of the exploration phase increases as the NSR value grows. In fact, the conver-

gence histories toward the optimal solutions using noise-free data are faster than those 

for a NSR=15%. It is observed that the initial parts of the evolutionary search are more 

irregular when using a noisy system response, thus highlighting the importance of the 

exploration stage.         

 

Figure 9: Convergence histories for DEA06 using free-noise and noisy reference response. 

7 EXPERIMENTAL RESULTS 

The synthesis of the conducted numerical studies provide positive evidences about the reli-

ability of the investigated non-classical identification techniques for parametric identification 

of nonlinear viscous dampers. Moreover, useful aspects regarding the computational efficien-

cy and the robustness against the instrumental noise were addressed. Nonetheless, the real 

viscous damper response may be more complicated and neglected nonlinearities can be rele-

vant. Therefore it is essential to assess the applicability of these methods by using experi-

mental data. To this end, some experimental tests were performed on a full-scale nonlinear 

viscous damper.   

7.1 Experimental tests 

??  [19]  

7.2 Results of the identification based on experimental data  

?? 



Jennifer Avakian, Giuseppe Carlo Marano, Giorgio Monti and Giuseppe Quaranta 

 18 

8 CONCLUSIONS  

?? 
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