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Abstract. In this paper a boundary element method is developed for the nonlinear 
flexural-torsional dynamic analysis of beams of arbitrary, simply or multiply 
connected, constant cross section, undergoing moderate large deflections and 
rotations under general boundary conditions, taking into account the effects of rotary 
and torsional warping inertia. Four boundary value problems are formulated with 
respect to the transverse displacements, to the axial displacement and to the angle of 
twist and solved using the Analog Equation Method, a BEM based method. The 
geometric, inertia, torsion and warping constants are evaluated employing the 
Boundary Element Method. The proposed model takes into account, both the 
Wagner’s coefficients and the shortening effect. Numerical examples are worked out 
to illustrate the efficiency, wherever possible the accuracy, the range of applications 
of the developed method as well as the influence of the nonlinear effects to the 
response of the beam. 
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1 INTRODUCTION 

In engineering practice, we often come across the analysis of beam structures 
subjected to vibratory loading. This problem becomes much more complicated in the 
case the cross section’s centroid does not coincide with its shear center (asymmetric 
beams), leading to the formulation of the flexural-torsional vibration problem. 
Besides, when arbitrary torsional boundary conditions are applied either at the edges 
or at any other interior point of the bar due to construction requirements, this bar 
under the action of general twisting loading is leaded to nonuniform torsion. 
Moreover, since weight saving is of paramount importance, frequently used thin-
walled open section beams have low flexural and/or torsional stiffness and their 
deformations can be of such magnitude that it is not adequate to treat the cross section 
displacements and its angle of rotation as small. In these cases, the study of nonlinear 
effects on these members becomes essential, where this non-linearity results from 
retaining the nonlinear terms in the strain–displacement relations (finite displacement 
– small strain theory). When finite displacements are considered, the flexural-
torsional dynamic analysis of bars becomes much more complicated, leading to the 
formulation of coupled and nonlinear flexural, torsional and axial equilibrium 
equations. 

When the displacement components of a member are small, a wide range of linear 
analysis tools, such as modal analysis, can be used and some analytical results are 
possible. As these components become larger, the induced geometric nonlinearities 
result in effects that are not observed in linear systems. In such situations the 
possibility of an analytical solution method is significantly reduced and is restricted to 
special cases of beam boundary conditions or loading. 

During the past few years, the nonlinear dynamic analysis of beams undergoing 
large deflections has received a good amount of attention in the literature. More 
specifically, Rozmarynowski and Szymczak in [1] studied the nonlinear free torsional 
vibrations of axially immovable thin-walled beams with doubly symmetric open cross 
section, employing the Finite Element Method. In this research effort only free 
vibrations are examined, the solution is provided only at points of reversal of motion 
(not in the time domain), no general axial, torsional or warping boundary conditions 
(elastic support case) are studied, while some nonlinear terms related to the finite 
twisting rotations as well as the axial inertia term are ignored. Crespo Da Silva in [2-
3] presented the nonlinear flexural-torsional-extensional vibrations of Euler-Bernoulli 
doubly symmetric thin-walled closed cross section beams, primarily focusing to 
flexural vibrations and neglecting the effect of torsional warping. Pai and Nayfeh in 
[4-6] studied also the nonlinear flexural-torsional-extensional vibrations of metallic 
and composite slewing or rotating closed cross section beams, primarily focusing to 
flexural vibrations and neglecting again the effect of torsional warping. Simo and Vu-
Quoc in [7] presented a FEM solution to a fully nonlinear (small or large strains, 
hyperelastic material) three dimensional rod model including the effects of transverse 
shear and torsion-warping deformation based on a geometrically exact description of 
the kinematics of deformation. Qaisi in [8] obtained nonlinear normal modes of free 
vibrating geometrically nonlinear beams of various edge conditions employing the 
harmonic balance analytical method. Moreover, Pai and Nayfeh in [9] studied a 
geometrically exact nonlinear curved beam model for solid composite rotor blades 
using the concept of local engineering stress and strain measures and taking into 
account the in-plane and out-of-plane warpings. Di Egidio et al. in [10-11] presented 
also a FEM solution to the nonlinear flexural-torsional vibrations of shear 
undeformable thin-walled open beams taking into account in-plane and out-of-plane 
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warpings and neglecting warping inertia. In this paper, the torsional-extensional 
coupling is taken into account but the inextensionality assumption leads to the fact 
that the axial boundary conditions are not general. Mohri et. al. in [12] proposed a 
FEM solution to the linear vibration analysis of pre- and post- buckled thin-walled 
open cross section beams, neglecting warping and axial inertia, considering 
geometrical nonlinearity only for the static loading and presenting examples of bars 
subjected to free vibrations and special boundary conditions. Machado and Cortinez 
in [13] presented also a FEM solution to the linear free vibration analysis of 
bisymmetric thin-walled composite beams of open shaped cross section, taking into 
account static initial stresses and deformations considering geometrical nonlinearity 
only for the static loading and presenting examples of bars subjected to special 
boundary conditions. Avramov et. al. [14-15] studied the free flexural-torsional 
vibrations of beams and obtained nonlinear normal modes by expansion of the 
equations of motion employing the Galerkin technique and neglecting the cross-
section warping. Lopes and Ribeiro [16] studied also the nonlinear flexural-torsional 
free vibrations of beams employing a FEM solution and neglecting the longitudinal 
and rotary inertia as well as the cross-section warping. Duan [17] presented a FEM 
formulation for the nonlinear free vibration problem of thin-walled curved beams of 
asymmetric cross-section based on a simplified displacement field. Finally, the 
boundary element method has also been used for the nonlinear flexural [18-20] and 
torsional [21] dynamic analysis of only doubly symmetric beams. To the authors’ 
knowledge the general problem of coupled nonlinear flexural – torsional free or 
forced vibrations of asymmetric beams has not yet been presented. 

In this paper, a boundary element method is developed for the nonlinear flexural-
torsional dynamic analysis of beams of arbitrary, simply or multiply connected, 
constant cross section, undergoing moderate large deflections and twisting rotations 
under general boundary conditions, taking into account the effects of rotary and 
warping inertia. The beam is subjected to the combined action of arbitrarily 
distributed or concentrated transverse loading in both directions as well as to twisting 
and/or axial loading. Four boundary value problems are formulated with respect to the 
transverse displacements, to the axial displacement and to the angle of twist and 
solved using the Analog Equation Method [22], a BEM based method. Application of 
the boundary element technique leads to a system of nonlinear coupled Differential – 
Algebraic Equations (DAE) of motion, which is solved iteratively using the Petzold-
Gear Backward Differentiation Formula (BDF) [23], a linear multistep method for 
differential equations coupled to algebraic equations (DAE). The geometric, inertia, 
torsion and warping constants are evaluated employing the Boundary Element 
Method. The essential features and novel aspects of the present formulation compared 
with previous ones are summarized as follows. 

i. The cross section is an arbitrarily shaped thin or thick walled one. The 
formulation does not stand on the assumption of a thin-walled structure and 
therefore the cross section’s torsional and warping rigidities are evaluated 
“exactly” in a numerical sense. 

ii. The beam is subjected to an arbitrarily distributed or concentrated transverse 
loading and bending moments in both directions as well as to axial loading. 

iii. The beam is supported by the most general boundary conditions including 
elastic support or restraint. 

iv. For the first time in the literature, the effects of rotary and warping inertia are 
taken into account on the nonlinear flexural-torsional dynamic analysis of 
asymmetric beams subjected to arbitrary loading and boundary conditions. 
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v. The transverse loading can be applied at any arbitrary point of the beam cross 
section. The eccentricity change of the transverse loading during the torsional 
beam motion, resulting in additional torsional moment is taken into account. 

vi. The proposed model takes into account the coupling effects of bending, axial 
and torsional response of the beam as well as the Wagner’s coefficients and the 
shortening effect.  

vii. The proposed method employs a BEM approach (requiring boundary 
discretization for the cross sectional analysis) resulting in line or parabolic 
elements instead of area elements of the FEM solutions (requiring the whole 
cross section to be discretized into triangular or quadrilateral area elements), 
while a small number of line elements are required to achieve high accuracy. 

Numerical examples are worked out to illustrate the efficiency, wherever possible the 
accuracy, the range of applications of the developed method as well as the influence 
of the nonlinear effects to the response of the beam. 
 

(a) (b) 

Figure1: Prismatic beam in axial - flexural - torsional loading (a) of an arbitrary cross-section 
occupying the two dimensional region   (b). 

3 STATEMENT OF THE PROBLEM 

Let us consider a prismatic beam of length  (Fig.1), of constant arbitrary cross 
section of area 

L
A . The homogeneous isotropic and linearly elastic material of the 

beam’s cross section, with modulus of elasticity , shear modulus G  and Poisson’s 
ratio  occupies the two dimensional multiply connected region 

E
v   of the  plane 

and is bounded by the 

,y z

( 1,2,..., )   j j K  boundary curves, which are piecewise 

smooth, i.e. they may have a finite number of corners. In Fig. 1 CY  is the principal 
bending coordinate system through the cross section’s centroid C , while 

Z

Cy ,  are 

its coordinates with respect to the  shear system of axes through the cross 
section’s shear center , with axes parallel to those of the  system. The beam is 
subjected to the combined action of the arbitrarily distributed or concentrated, time 
dependent and conservative axial loading 

Cz

Syz
S CYZ

( , )X Xp p X t  along X  direction, twisting 

moment  along (x x ,m m x )t x  direction and transverse loading ( , )y yp p x t , 

( , )z zp p x t  acting along the  and  directions, respectively, applied at distances y z

ypy , 
ypz  and 

zpy , 
zpz ,  with respect to the  shear system of axes (Fig. 1b). It is 

worth here noting that the aforementioned transverse loading can be applied at any 
arbitrary point of the beam’s cross section and not necessarily at its centroid or at its 
shear center. In the case of a linear analysis, where the beam deflections and rotations 

Syz
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are considered to be small, in order to overcome the fact that the external transverse 
loading is usually applied as tractions upon the surface of the beam, the superposition 
principle is adopted and the actual applied system of forces is replaced by a statically 
equivalent one, acting on the centroid or on the shear center of the beam (Fig. 2a). 
However in nonlinear analysis, where twisting rotations are considered to be large, the 
occurring change of eccentricity (Fig. 2b) may have substantial influence on the beam 
response and must be taken into account. 
 

y

z

 zp t

y

z
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 zp t

e

 t zM p t e

 

(a) 

y

z
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 zp t

e

y

z

 zp t

e' e' e

 

(b) 

Figure 2: Superposition principle in linear analysis (a) and change of eccentricity of the transverse 
force zp  during the twisting motion of the cross section in nonlinear analysis (b). 

 
Under the action of the aforementioned loading and employing the Euler-Bernoulli 

assumption, the displacement field of an arbitrary point of the cross section can be 
derived with respect to those of the shear center as [12] 
 

              , , , , , , , ,      P
C Z C Y x Su x y z t u x t y y x t z z x t x t y z      (1a) 

         , , , , sin , 1 cos ,     xv x y z t v x t z x t y x t x  (1b) 

         , , , , sin , 1 cos ,     xw x y z t w x t y x t z x t x  (1c) 

           , , sin , , cos ,  Y x xx t v x t x t w x t x t    (1d) 

           , , cos , , sin  Z x ,xx t v x t x t w x t x t    (1e) 

 
where u , v , w  are the axial and transverse beam displacement components with 

respect to the  shear system of axes;  Syz    1
, , , A

u x t u x y z t dA
A

,  denotes the 

average axial displacement of the cross section [24] and  ,v v x t ,  are  ,w w x t 
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the corresponding components of the shear center ; S  ,Y x t ,  ,Z x t  are the angles 

of rotation of the cross section due to bending, with respect to its centroid;  ,
x x t  

denotes the rate of change of the angle of twist  ,x x t  regarded as the torsional 

curvature and P
S  is the primary warping function with respect to the shear center S 

[25]. Employing the strain-displacement relations of the three-dimensional elasticity 
for moderate displacements [26, 27], the strain components can be written as 
 

     
    

c

s

v

v

os

in

 

 

x

x w

sin

cos

 

 

x

x

w



  2
2 2 2 2

sin cos

cos sin

1

2

      

     

     
 

xx x x C

x C x x C

x

u z v w y y

z v w y

v w y z

  

    









C

P
x S

z 

 (2a) 

2
 
 

P
S    

 
xy xy xz

y

    (2b) 

2
 
 

P
S    

 
xz xz xy

z

    (2c) 

 
while considering strains to be small, the non vanishing stress components of the 
second Piola – Kirchhoff stress tensor are obtained as 
 

     

    

cos

sin





x

x

v

v 

sin

cos





x

x

w

w





  2
2 2 2 2

sin cos

cos sin

1

2

       
    

      

xx C x x

x C x x

x

S E u z v w y

z v w

v w y z

  

  







C

C

y

y 

 

P
x S

z

   (3a) 

 
 

P
S

y

    
 

xy xS G z  (3b) 

 
 

P
S

z

    
 

xz xS G y  (3c) 

 
In order to establish the nonlinear equations of motion, the principle of virtual 

work  
 

int t mass exW W W    (4) 

 
where 
 

int  xx xy xy xz xzV
W S S S   dV  (5a)  xx 

  mass V
W u u v v w w       dV  (5b) 

     y zext X C y p z p x xL
W p u p v p w m     dx  (5c) 
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under a Total Lagrangian formulation, is employed. In the above equations,    

denotes virtual quantities,   denotes differentiation with respect to time, V  is the 

volume of the beam, 

 
Cu  is the axial displacement of the centroid and 

ypv , 
zpw  are the 

transverse displacements of the points where the loads yp , zp , respectively, are 

applied. It is worth here noting that the aforementioned relation of the external work 

extW  (eqn. (5c)) is expressed in terms of the applied external forces and virtual 

quantities of the kinematical components in the deformed configuration of the beam. 
This expression takes into account the change of the eccentricity of the external 
conservative transverse loading, arising from the cross section torsional rotation, 
inducing additional (positive or negative) torsional moment (Fig. 2b). Substituting the 
expressions of virtual quantities in eqn. (5c), the external work can be written as 
 

 
  

cos sin

cos sin

     
   

 y y

z z

ext X y z y p x p xL

z p x p x x x

W p u p v p w p z y

p y z m dx

    

  


 (6) 

 
Expanding the trigonometric functions in terms of Taylor series and keeping the first 
two terms [12], the following approximate expressions are obtained 
 

2 2

cos 1 1
2

   
 2

x x
x

                              (7a) 

3 3

sin
3

   
 6

x x
x x x

     (7b) 

 
Using equations (7), equation (6) can be written as 
 

 

2 3

2 3

1 1

2 6

1 1

2 6

          
     

  


 






 y y y y

z z z z

ext X y z y p p x x p x p

p p x x p x

L

z x xp

W p u p v z y z y

y z y

p w p

p xz m d

   



  

  







 (8) 

 
As it can be observed from equation (8), neglecting all the nonlinear terms leads to the 
well known linear expression of the external twisting moment, arising from the 
superposition principle. In the present study, these terms are retained, so that the 
change of eccentricity is taken into account. Moreover, the stress resultants of the 
beam can be defined as 
 


  xxN S d  (9a) 

 
  xxM S Zd  (9b) 


  Z xxM S Yd  (9c) 



     
            


P P
P S S
t xy xz M S z S y

y z

 
d  (9d) 
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
   P

w xx SM S d  (9e) 

 2 2


 R xx M S y z d  (9f) 

 
where P

t  is the primary twisting moment [25, 28] resulting from the primary shear 

stress distribution xyS , xzS , wM  is the warping moment due to torsional curvature and 

RM  is a higher order stress resultant. Substituting the expressions of the stress 

components (3) into equations (9a-9f), the stress resultants are obtained as 
 

    

2 2 21

2

cos sin sin cos

           
        

S
x

x C x x C x x

I
N EA u v w

A

z v w y v w



    
 (10a) 

 2cos sin     Y Y x x Z xM EI w v     (10b) 

 2cos sin    Z Z x x Y xM EI v w     (10c) 

P
t t xM GI   (10d) 

 2   w S x xM EC     (10e) 

   
2

2

2 cos sin 2 cos sin

1
2

2

       

     
 

S
R Z Y x x Y Z x

S
S x R x

I
M N EI v w EI w v

A

I
EC E I

A

     

  

x

 (10f) 

 
where the area A, the polar moment of inertia SI  with respect to the shear center S, the 

principal moments of inertia YI , ZI  with respect to the cross section’s centroid, the 

fourth moment of inertia RI  with respect to the shear center S, the torsion constant tI  

and the warping constant  with respect to the shear center , are given as SC S

 


 A d



 (11a) 

 2 2


 SI y z d  (11b) 

2


 Y I Z d  (11c) 

2


 Z I Y d  (11d) 

 22 2


 R I y z d

2

 (11e) 

 


  P
S SC  d  (11f) 

2 2



  
      


P P
S S

t I y z y z d
z y

 
 (11g) 
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while the Wagner’s coefficients Z , Y  and   are given as 

 

  2 21

2 
  Z C

Y

z z y z d
I

   (12a) 

  2 21

2 
  Y C

Z

y y y z d
I

  (12b) 

 2 21

2 
  P

S
S

y z d
C   (12c) 

 
Employing the expressions of strain obtained in equations (2), the expressions of 
stress resultants given in equations (10) and applying the principle of virtual work 
(eqn. (4)), the equations of motion of the beam can be derived. The arising set of 
equations is coupled and highly complicated. Simplification can be achieved by 
neglecting the axial inertia of the beam, denoted by the term Au , and employing the 
approximate expressions given in equations (7). Thus, using the aforementioned 
approximations and ignoring the nonlinear terms of the fourth or greater order [12], 
the governing partial differential equations of motion for the beam at hand can be 
written as 
 

                         
2S

x x C x x x x x x x
I

EA u w w v v z w w v v w
A
           

               
2

C x x x x x x x Xy v v w w v       p





 (13a) 

 

 2
Z C x C x x xEI v N z y v             

 Z Y x x xEI EI w 2w w v           

 
 

 

2 2
x x x x x x4v 2v 2v          

 2 2 2
x x x x x2 5 Av           Z Y x x x Y Z x xEI 2 2 EI 2               

     2
Z Y x x Z C x C C x x Z Y

1
I I v v I w A y z z I I

2
                      

   

  2
x x x x x x x x x x x x x Z2 v v 2 v 2 v w w v I                                  

           

  2 2
x x x x x x C C x xw v 2 w v 2v 2 w A y z p                          

 
         y  

  X C x x C xp v y z     

x 



 (13b) 

 

 2
Y C x C x xEI w N w y z            

 

    2 2
Z Y x x x x x x x x xEI EI v 2v v w 4w 2w 2w                         
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    2 2 2
Z Y x x x x x x x Y Z x x xEI 2 5 2 EI 2 2 Aw                           

  


  2
Z Y x x Y C x C C x x Z Y

1
I I w w I v A z y y I I

2
                        



 2



 x x x x x x x x x x x x x Y2 w w 2 w 2 w v v w I                                  
        

 2 2



 x x x x x x C C x x zv w 2 v w 2w 2 v A z y p                          
 

        

  X C x C x xp w y z       (13c) 

 

  
2

2S S
S x t x R x x x C x C x

I I3
EC GI E I N y w v z v w

2 A A
      

 
                       

    2 2
Z Y x xEI EI v w v w        

   2
Z Y x x x x x x xEI 2 w w 2 v 2 v 2 w                   

   2 2 2
Y Z S xv I w I IY Z x x x x x x xEI 2 v 2 w 2 w v 2 v                           

  2 2
C C x C x C C x C x Z Y x

1 1
A z y z v A y z y w I I w w v v

2 2
                         

   
   

    z zZ x x S x x z p y pI w v 2 w w I v w 2 v v C m p y p z                           

 

 

y y y z z z

2 3 3 2
x p x p x p x p x p p xy z

1 1 1 1
z y y z y z

6 6 2
p p

2
           

 
  


   

 S
X x C x C x C C

I
p y v z w z v y w

A
          

 
  (13d) 

 
while the expression of is given as N
 

   2 2 21

2

                    
S

x x C x C x

I
N EA u v w z w v y v w

A
      (14) 

 
The above governing differential equations (eqns. (13)) are also subjected to the initial 
conditions (  0,x l ) 

 
  0,0 u x u x     0,0 u x u x   (15a,b) 

  0,0 v x v x     0,0 v x v x   (16a,b) 

  0,0 w x w x     0,0 w x w x   (17a,b) 

  0,0 x x x x      0,0 x xx x    (18a,b) 

 
together with the corresponding boundary conditions of the problem at hand, which 
are given as 
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   1 2, ,a u x t N x t 3   (19) 

   1 2, , yv x t V x t 3       1 2, , 3  Z Zx t x t     (20a,b) 

   1 2, , zw x t V x t 3       1 2, , 3  Y Yx t x t   

3

 (21a,b) 

   1 2, , x tx t M x t        1 2, ,
3 x wx t M x t     (22a,b) 

 
at the beam ends 0,x l , where ,  and yV zV ZM , YM  are the reactions and bending 

moments with respect to y ,  or to Y , z Z  axes, respectively, given by the following 
relations (ignoring again the nonlinear terms of the fourth or greater order) 
 

 
 
 

2

2 3

2 2

2 2

    

           

           

y C x C x x

Z x x x x x Y x x

Y x x x x x Z x Z x x x

V N v z y

EI v w w v v

EI w w v v

  

         

          

 (23a) 

 

 
 
 

2

2 3

2 2

2 2

     

            

          

z C x C x x

Y x x x x x Z x x

Z x x x x x Y x x x Y x

V N w y z

EI w v w v w

EI v w v w

  

       

          



 

 (23b) 

 

   2 2 2             2
Z Z x Y x x Y x x Z xM EI w v v EI w v x          (23c) 

 

   2 2 2 2            Y Z x Y x x x Y Z x xM EI w v EI w w v x          (23d) 

 
while tM  and wM  are the torsional and warping moments at the boundary of the bar, 

respectively, given as 
  

   
2

31
2 2 2 2

2

               
 

               
 

S
t t x S x C x C C x C x

S 
Z Y x x x Y Z x x x R

I
M GI EC N z w y w y v z v

A

I
EI v w EI w v E I

A

    

x        
 

  (24a) 
 

 2   w S x xM EC     (24b) 

 
Finally, , , , , , ,     k k k k k k k        ( 1,2,3k

0,

) are time dependent functions 

specified at the boundaries of the bar ( x l ). The boundary conditions eqns. (19)-
(22) are the most general boundary conditions for the problem at hand, including also 
the elastic support. It is apparent that all types of the conventional boundary 
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conditions (clamped, simply supported, free or guided edge) can be derived from 
these equations by specifying appropriately these functions (e.g. for a clamped edge it 

is 1 1 1 1 1       , 1 1 1 1     , 2 3   2 3   2 3   2 3    

2 3   2 3   2 3 0   ). In a case of eccentric axial loading or additional 

concentrated or distributed bending or warping moments, additional terms in 
governing equations (13) would arise. These terms could be taken into account 
without any special difficulty, by modifying appropriately equations (5c), (6), (8). 
 

4 INTEGRAL REPRESENTATIONS-NUMERICAL SOLUTION 

4.1 Evaluation of the axial displacement u x, t  , the transverse displacements 

v x, t  , w x, t   and the angle of twist x x, t   

According to the precedent analysis, the nonlinear flexural-torsional vibration 
problem of a beam reduces in establishing the axial displacement component  

having continuous partial derivatives up to the second order and the transverse 
displacement components , 

 ,u x t

 ,v x t  ,w x t  and the angle of rotation  ,x x t  having 

continuous partial derivatives up to the fourth order with respect to x  and up to the 
second order with respect to t , satisfying the nonlinear initial boundary value problem 
described by the coupled governing differential equations of motion (eqns. (13)) along 
the beam, the initial conditions (eqns. (15)-(18)) and the boundary conditions (eqns. 
(19)-(22)) at the beam ends 0,x l . Eqns. (13) and (15)-(22) are solved using the 
Analog Equation Method [22] as it is developed for hyperbolic differential equations 
in [29, 30]. 
 
5 NUMERICAL EXAMPLES 

On the basis of the analytical and numerical procedures presented in the previous 
sections, a computer program has been written and representative examples have been 
studied to demonstrate the validation, the efficiency, wherever possible the accuracy 
and the range of applications of the developed method. The numerical results have 
been obtained employing 21 nodal points (longitudinal discretization) and 400 
boundary elements (cross section discretization). 
 
Example 1 

In the first example, for comparison reasons, the forced vibrations of a steel-I beam 
(Fig. 3), ( 8 2 7 2N m2,1 10 E kN m , 8,0769 10  G k , 37, 85 tn m , flange 

width , web width 0,03t m 0,012wt m , total height 0,56hf m , total width 

) having geometric constants presented in Table 1, under three load cases, 
are examined. In the first load case (case (a), Fig. 3a), a beam with hinged-hinged 
ends, of length  is considered. The beam is subjected to a uniformly 
distributed ‘static’ loading 

0,b 30m

10 l m

   0 1z zp t p t t  for 0 1 t t  and   0z zp t p  for  

( , 
1t t

1 0,t 02 psec 3000 0z kN m ), as this is shown in Fig. 3a. In Fig. 4 the time 

histories of the displacements  0 ,u x t ,  t0 ,w x  at 0 6,9048x m  are presented, 

respectively, as compared with those obtained from a BEM solution [20], noting the 
accuracy of the proposed method.  
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2 22, 4 10 A m  4 61,14831 10 RI m  
3 41,39035 10 YI m  6 45,38871 10 tI m  

4 41,35072 10   ZI m  6 69, 48415 10   SC m  
3 41,5254 10 SI m   

Table 1: Geometric constants of the beam of example 1. 
 

Nonlinear Analysis 

Load case (b) Load case (c) 

 

Linear 
Analysis 

Present 
study 

FEM  
960 solid 
elements 

[31] 

FEM 
2080 shell 
elements 

[31] 

Present 
study 

FEM 
 960 solid 
elements 

[31] 

FEM 
2080 shell 
elements 

[31] 

 max
u l  0,0000 -0,0033 -0,0034 -0,0037 -0,0031 -0,0032 -0,0032 

 max
v l  0,0000 0,0615 0,0603 0,0675 0,0331 0,0329 0,0328 

 max
w l  0,2040 0,2045 0,2108 0,2114 0,2040 0,2108 0,2078 

Table 2: Maximum values of the kinematical components  ,u l t   m ,  ,v l t  m  and   of 

the cantilever beam of example 1 for load cases (b), (c). 

 ,w l t  m

 

y

z

S C

 zp t

 

y

z

S C

 zp t

0 25, m

0 03, m

 

y

z

S C

 zp t

0 25, m

0 03, m

 
(a) (b) (c) 

Figure 3: Transverse load applied on the centroid concerning the first load case (a) and on the flange 
concerning the second load case (b) and the third load case (c) of example 1. 
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Figure 4: Time history of the displacements u  and w  at 0 6,9048 x m  of the hinged-hinged beam of 

example 1 for load case (a). 
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Load case (c), FEM 960 solid elements, [37]
Load case (c), FEM 2080 shell elements, [37]
Linear analysis  

Figure 5: Time history of the displacement  at the tip of the cantilever beam of example 1 for load 
cases (b), (c). 
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Figure 6: Time history of the displacement  at the tip of the cantilever beam of example 1 for load 
cases (b), (c). 
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Load case (b), present study 21 elements
Load case (b), FEM 960 solid elements, [37]
Load case (b), FEM 2080 shell elements, [37]
Load case (c), present study 21 elements
Load case (c), FEM 960 solid elements, [37]
Load case (c), FEM 2080 shell elements, [37]  

Figure 7: Time history of the displacement  at the tip of the cantilever beam of example 1 for load 
cases (b), (c). 

w

 
Moreover, in order to demonstrate the influence of the loading position upon the 

cross section, a cantilever beam of the same cross section of length , 
undergoing a uniformly distributed ‘static’ loading (

8 l m

1 0,02 sec t , 0 60 zp kN m ) is 

examined for the load cases (b), (c) (Figs. 3b,c). In Figs. 5-7 the time histories of the 
kinematical components , ,u l t  ,v l t  and  

0,1se

,w l t , respectively, at the tip cross 

section of the cantilever beam are presented as compared with those obtained from a 
FEM solution [31, 32], employing either shell or solid finite elements. In Fig. 8 the 
deformed configurations of the beam at the time instant c t  for the load case 
(b) and at  for the load case (c) are presented as compared with those 
obtained from a FEM solution [31, 32]. Finally, in Table 2 the maximum values of the 

0,067 sec t
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kinematical components , ,u l t  ,v l t  and  ,w l t  of the present study are presented 

together with those obtained from the aforementioned FEM solutions [31, 32]. From 
these figures and table the accuracy of the proposed method is demonstrated. 
Moreover, as it can easily be observed, the loading position may have important 
influence on the dynamic response of the beam. 
 

Load case (b) at  0,1s t ec Load case (c) at 0,067 sec t   

  

(a) 

  

(b) 

  

(c) 

Figure 8: Deformed configurations of the cantilever beam of example 1 from the present study (a) and 
a FEM solution using solid elements (b) or shell elements (c). 
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Figure 9: Cantilever beam of example 2 (a) and load with eccentricity with respect to the shear center 
of its cross section (b).  

 
3 21,878 10 A m  8 43,049 10 tI m  
6 47,176 10 YI m  11 63,495 10 SC m  
7 47,110 10 ZI m  27,276 10  z m  
5 41,295 10 SI m  25,2 10  cz m  
7 62,581 10 RI m   

Table 3: Geometric constants of the beam of example 2. 
 

Nonlinear Analysis  
Linear 

Analysis Ignoring eccentricity 
change 

Taking into account 
eccentricity change 

 max
v l  0,0009 −0,0017 0,0021 

 max
w l  0,0068 0,0068 0,0068 

 maxx l  0,0304 0,0264 0,1090 

Table 4: Maximum values of the kinematical components  ,v l t   m ,  ,w l t   and   m  ,x l t

 rad  of the cantilever beam of example 2. 
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Figure 10: Time history of the displacement  at the tip of the cantilever beam of example 2. v
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Figure 11: Time history of the displacement  at the tip of the cantilever beam of example 2. w
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Figure 12: Time history of the angle of twist x  at the tip of the cantilever beam of example 2. 
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Figure 13. Deformation of the cantilever beam of example 2 at 0,02 sec t . 

 
Example 2 

In order to investigate the influence of eccentricity change of the transverse loading 
in nonlinear flexural-torsional vibrations, the forced vibration of a cantilever beam 
( 8 22,1 10  E kN m , 7 28,0769 10  G kN m , 37,85 tn m , ) of a 
monosymmetric thin-walled open shaped cross section (its geometric constants are 
presented in Table 3), as this is shown in Fig. 9, has been studied. More specifically, 
the beam is subjected to a suddenly applied concentrated force 

1 l m

 zP t 16 kN  having a 

slight eccentricity  with respect to the shear center of the tip cross 
section (Fig. 9b). In Figs. 10-12 the time histories of the transverse displacements 

,  and the angle of twist 

0,0028e m

 ,tv l  ,tw l  ,tx l  of the cantilever beam, respectively, in 

Table 4 the maximum values of its kinematical components and in Fig. 13 the 
deformation of the cantilever beam at the time instant 0,02 sec t , are presented. 
From these figures and table, the influence of the relatively small ‘imperfection’ of 
the application point of the transverse loading to the beam response is remarked. 
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Figure 14: Cross section of the cantilever beam of example 3. 
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2 25,1 10 A m  0,41330  rad  
4 49,64614 10 YI m  4 42,6965 10 tI m  
4 43,90079 10 ZI m  6 64,6911 10 SC m  
3 41,58177 10 SI m  28,56633 10 y m  
5 67,14223 10 RI m  38,89913 10  z m  

26,20527 10 cy m  0,39404  
22,45329 10  cz m   

Table 5: Geometric constants of the beam of example 3. 
 
Example 3 

In order to demonstrate the range of applications of the developed method, in this 
final example the forced vibration of a hinged-hinged (axially immovable ends) beam 
of length  (3,5 l m 7 23,0 10  E kN m , 7 21,25 10  G kN m , 32,5 tn m ) 
having an asymmetric closed shaped cross section (its geometric constants are 
presented in Table 5), subjected to a uniformly distributed suddenly applied loading 

1000yp kN m , as this is shown in Fig. 14, is examined. In Figs. 15-17 the time 

histories of the transverse displacements  2,v l t ,  2,w l t  and the angle of twist 

 2,x l t , respectively, in Table 6 the maximum values of its kinematical 

components and in Fig. 18 the deformation of the hinged-hinged beam at the time 
instant , are presented. As it can be observed, in this case, the 
eccentricity change did not affect significantly the dynamic response of the beam, 
while geometrical nonlinearity due to axially immovable ends had important 
influence, especially on the transverse displacements , w . 

0,017 sec t

v 
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Nonlinear analysis, full set of equations

Nonlinear analysis, ignoring eccentricity change

Linear analysis  

Figure 15: Time history of the displacement  at the midpoint of the hinged-hinged beam of example 3.v
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Figure 16: Time history of the displacement  at the midpoint of the hinged-hinged beam of example 3. w
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Figure 17: Time history of the angle of rotation x  at the midpoint of the hinged-hinged beam of 

example 3. 
 

Nonlinear Analysis  
Linear 

Analysis Ignoring eccentricity 
change 

Taking into account 
eccentricity change 

 max
2v l  −0,2940 −0,1920 −0,1910 

 max
2w l  0,1090 0,0782 0,0782 

 max
2x l  0,1150 0,1340 0,1460 

Table 6: Maximum values of the kinematical components  2,v l t   m ,  2,w l t   and  m

 2,x l t   rad  of the fixed-fixed beam of example 3. 
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Figure 18: Deformation of the hinged-hinged beam of example 3 at 0,017 sec t . 

6 CONCLUSIONS 

In this paper a boundary element method is developed for the nonlinear elastic 
flexural-torsional dynamic analysis of beams of arbitrary cross section, undergoing  
moderately large displacements and angles of twist, taking into account the effects of 
rotary and warping inertia and the change of eccentricity of transverse loads during 
torsional rotation. The main conclusions that can be drawn from this investigation are: 

 The numerical technique presented in this investigation is well suited for 
computer aided analysis of beams of arbitrary simply or multiply connected 
cross section supported by the most general boundary conditions and subjected 
to the combined action of arbitrarily distributed or concentrated time dependent 
loading. 

 The geometrical nonlinearity leads to strong coupling between the axial, 
torsional and bending equilibrium equations, resulting a significantly different 
response of the beam compared with this obtained from a linear analysis. 

 The change of eccentricity of the transverse loading during the torsional rotation 
of the cross section affects significantly the torsional response of the beam 

 Different loading positions upon the cross section may alter significantly the 
torsional response of the beam. 

 Accurate results are obtained using a relatively small number of nodal points 
along the beam. 

 The developed procedure retains most of the advantages of a BEM solution over 
a FEM approach, although it requires longitudinal domain discretization. 
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