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Abstract.This paper examines the rocking response and stability of rigid blocks standing free on an 
isolated base supported on linear viscoelastic bearings and bearings that exhibit bilinear behavior. The 
investigation concludes that seismic isolation is beneficial only for small blocks. This happens because 
while seismic isolation increase the “static” value of the minimum overturning acceleration, this 
acceleration value remains nearly constant as we move towards larger blocks or higher frequency 
pulses; therefore seismic isolation removes drastically from the dynamics of rocking blocks the 
beneficial property of increasing stability as their size increases or as the excitation pulse period 
decreases. This remarkable result suggests that freestanding ancient classical columns exhibit superior 
stability as they are built (standing free on a rigid foundation) rather than if they were seismically 
isolated even with isolation systems with very long isolation periods. The study further confirms this 
finding by examining the seismic response of the columns from the peristyle of two ancient Greek 
temples when subjected to historic records.
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1        INTRODUCTION 
Under base shaking slender objects and tall rigid structures may enter into rocking motion 

that occasionally results in overturning. Early studies on the rocking response of a rigid block 
supported on a base undergoing horizontal accelerated motion were presented by Housner 
(1963) [1]. His pioneering work uncovered a size-frequency scale effect which explained 
why: (a) the larger of two geometrically similar blocks can survive the excitation that will 
topple the smaller block; and (b) out of two same acceleration-amplitude pulses the one with 
the longer duration is more capable to induce overturning. 

As the size of the block increases, the duration of  the coherent pulse of the base motion 
plays a dominant role in inducing overturning. For instance, Figure 1, plots the rocking 
response of a rigid block that is 2.0m tall and 0.5m wide when subjected to an intense 
(ap=0.5g) but short duration (Tp=0.5s) one-sine acceleration pulse (left–no overturning) and a 
less intense (ap=0.29g), yet longer duration pulse (Tp=2s) one sine acceleration pulse (right – 
overturning). Interestingly, this 2.0m×0.5m rigid block survives the intense, short duration 
pulse; yet overturns when subjected to the lower acceleration amplitude, long-duration pulse. 
The above example shows that reducing the base acceleration  while lengthening the period of 
the excitation (what seismic isolation does) is not a beneficial approach for all combinations 
of block size and frequency content of the base excitation. 

The rocking response of slender rigid objects standing free on a seismically isolated base is 
a subject that has received attention during the last two decades mainly from the need to 
protect slender art objects within museums (Augusti et al. 1992 [2], Vestroni and Di Cinto 
2000 [3], Calio and Marletta 2003 [4], Roussis et al. 2008 [5], Contento and Egidio 2009 [6] 
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Figure 1. Horizontal ground acceleration, block rotation and angular velocity time histories of the block shown 
above (p=2.67rad/s, tan(α)=0.25) subjected to a one-sine pulse. Left: ap=0.50g, Tp=0.5s – no overturning, Right 
ap=0.29g<0.5g and Tp=2.0s>0.5s – overturning. 
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among others). These studies primarily focused on the seismic protection of relative small 
size blocks such as art objects up to human-size statues and they invariably concluded that 
seismic isolation suppresses the rocking response and protects such objects from overturning. 
Given, however, the results of Figure 1, this paper investigates in depth up to what size of free 
standing objects the application of seismic isolation is beneficial and concludes that larger 
free-standing structures like ancient columns of temples have superior stability as they stand 
free atop their massive foundations compare to if they were seismic isolated. Furthermore, 
this study settles the matter of conservation of linear momentum of the entire system (the 
rocking – translating block and the translating isolated base) during the impact of the rocking 
block – a matter that has been overlooked by other investigators.  

2       REVIEW OF THE ROCKING RESPONSE OF A RIGID BLOCK. 
With reference to Figure 2 and assuming that the coefficient of friction is large enough so 

that there is no sliding, the equation of motion of a rocking block with size 2 2R h b= +  and 
slenderness α=atan(b/h) for rotation around O and O’ respectively is (Yim et al. 1980 [7], 
Makris and Roussos 2000 [8], Zhang and Makris 2001 [9] among others) 

 ( ) ( )[ ] ( ) ( )[ ] ( )+ sin - - = - cos - - , < 0o gI θ t mgR α θ t mu t R α θ t θ t   (1) 

 ( ) ( )[ ] ( ) ( )[ ] ( )+ sin - = - cos - , >o gI θ t mgR α θ t mu t R α θ t θ t 0 . (2) 

For rectangular blocks, ( ) 2= 4 / 3oI mR and the above equations can be expressed in the 
compact form 

 ( ) ( )( ) ( ) ( )( ) ( )2 sin sgn cos sgngu
t p t t t t

g
⎧ ⎫⎡ ⎤ ⎡= − − + −⎨ ⎬⎣ ⎦ ⎣⎩ ⎭

θ α θ θ α θ ⎤⎦θ  .    (3)  

The oscillation frequency of a rigid block under free vibration is not constant, because it 
strongly depends on the vibration amplitude (Housner 1963 [1]). Nevertheless, the quantity 

 

Figure 2. Geometric characteristics of the model considered. Left: Rigid block subjected to ground shaking. 
Right: Rigid block on isolated base. 
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3
4

gp
R

=  is a measure of the dynamic characteristics of the block. For the 2.0m×0.5m block 

shown in Figure 1 (say an modern refrigerator), p =2.67 rad/s, and for a household brick, p ≈ 
8 rad/s. 

Figure 3 shows the moment-rotation relationship during the rocking motion of a free-
standing block. The system has infinite stiffness until the magnitude of the applied moment 
reaches the value mgRsinα, and once the block is rocking, its restoring force decreases 
monotonically, reaching zero when θ = α. During the oscillatory rocking motion, the moment-
rotation curve follows this curve without enclosing any area. Energy is lost only during 
impact, when the angle of rotation reverses. When the angle of rotation reverses, it is assumed 
that the rotation continues smoothly from points O to O’ and that the impact force is 
concentrated at the new pivot point, O’. With this idealization, the impact force applies no 
moment around O’, hence the angular momentum around O’ is conserved. Conservation of 
angular momentum about point O’ just before the impact and right after the impact gives 

  (4) ( )1 1- 2 sin =oI θ mθ bR α I θ2o

where  = angular velocity just prior to the impact; and  = angular velocity right after the 
impact. The ratio of kinetic energy after and before the impact is 

1θ 2θ

 
2
2
2

1

=
θ

r
θ

 (5) 

which means that the angular velocity after the impact is only r  times the velocity before 
the impact. Substitution of (4) into (5) gives 

 2 23
= [1- sin ]

2
r α  (6) 

The value of the coefficient of restitution given by (6) is the maximum value of r under 
which a block with slenderness α will undergo rocking motion. Consequently, to observe 
rocking motion, the impact has to be inelastic. The less slender a block (larger α), the more 
plastic is the impact, and for the value of -1= sin 2 / 3 = 54.73oα , the impact is perfectly 
plastic. 

 
Figure 3. Moment rotation diagram of a rocking object 
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During rocking motion of slender blocks, if additional energy is lost due to the inelastic 
behavior at the instant of impact, the value of the true coefficient of restitution r will be less 
than the one computed from equation (6). 

3        TIME SCALE AND LENGTH SCALE OF PULSE-LIKE GROUND MOTIONS 
The relative simple form, yet destructive potential of near source ground motions has 

motivated the development of various closed form expressions which approximate their 
leading kinematic characteristics. The early work of Veletsos et al. [10] was followed by the 
papers of Hall et al. [11], Heaton et al. [12], Makris [13], Makris and Chang [14], Alavi and 
Krawinkler [15] and more recently by the paper of Mavroeidis and Papageorgiou [16]. Some 
of the proposed pulses are physically realizable motions with zero final ground velocity and 
finite accelerations whereas some other idealizations violate one or both of the above 
requirements. Physically realizable pulses can adequately describe the impulsive character of 
near-fault ground motions both qualitatively and quantitatively. The input parameters of the 
model have an unambiguous physical meaning. The minimum number of parameters is two, 
which are either the acceleration amplitude, ap, and duration, Tp, or the velocity amplitude, vp, 
and duration, Tp (Makris 1997[13], Makris and Chang 2000[14]). The more sophisticated 
model of Mavroeidis and Papageorgiou [16] involves 4 parameters, which are the pulse 
period, the pulse amplitude as well as the phase and number of half cycles, and was found to 
describe a large set of velocity pulses generated due to forward directivity or permanent 
translation effect. The pulse period, Tp, of the most energetic pulse of strong ground motions 
is strongly correlated with the moment magnitude, Mw, of the event. For a given moment 
magnitude, the duration of pulses produced by strike-slip faults is on average larger than the 
duration of pulses generated by reverse faults. Assuming that the time scale Tp is independent 
of the source–station distance, for stations located within ~10km from the causative fault, the 
pulse period and moment magnitude are related through the following empirical relationship 
which also satisfies a self-similarity condition [16, 17, 18]: 
  (7) ln = -2.9 + 0.5pT wM

Furthermore, seismological data indicate that the amplitude of the velocity pulses recorded 
within a distance of 7 km from the causative fault varies from 60 to 120 cm/s. This 
observation is in good agreement with the typical slip velocity value of 90 cm/s frequently 
considered by seismologists (Brune 1970 [19], Aki 1983[20]). 

The current established methodologies for estimating the pulse characteristics of a wide 
class of records are of unique value since the product, , is a characteristic length 
scale of the ground excitation and is a measure of the persistence of the most energetic pulse 
to generate inelastic deformations (Makris and Black 2004 [21]). It is emphasized that the 
persistence of the pulse is a different characteristic than the strength of the pulse which is 
measured with the peak pulse acceleration. The reader should recall that among two pulses 
with different acceleration amplitude (say ap1>ap2) and different pulse duration (say Tp1<Tp2), 
the inelastic deformation does not scale with the peak pulse acceleration (most intense pulse) 
but with the stronger length scale (larger  = most persistent pulse), Makris and Black 
2004a,b [21],[22], Karavassilis et al. 2010 [23]. 

2 =p p pa T L

2
p pa T

The heavy line in Figure 4 (top) which approximates the long-period acceleration pulse of 
the NS component of the 1992 Erzinkan, Turkey, record is a scaled expression of the second 

derivative of the Gaussian distribution, 
2

-
2
t

e , known in the seismology literature as the 
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symmetric Ricker wavelet (Ricker 1943[24], 1944[25]) and widely referred as the “Mexican 
Hat” wavelet, Addison 2002[26]) 

 ( )
2 2

2
1 22 2 -
2

2

2
= (1- ) p

π t
T

g p
p

π t
u t a e

T
 (8) 

The value of 
2

=p
p

π
T

ω
, is the period that maximizes the Fourier spectrum of the symmetric 

Ricker wavelet. 
Similarly, the heavy line in Figure 4 (center) which approximates the long-period 

acceleration pulse of the Pacoima Dam motion recorded during the February 9, 1971 San 
Fernando, California earthquake is a scaled expression of the third derivative of the Gaussian  
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Figure 4. Acceleration time histories recorded during the: (Top) 1992 Erzincan, Turkey earthquake together with 
a symmetric Ricker wavelet; (Center) 1971 San Fernando earthquake – fault normalcomponent of the Pacoima 
Dam record together with an antisymmetric Ricker wavelet; and (bottom) 1994 Northridge earthquake – 228 
Rinaldi station together with a one cycle sine pulse. 
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distribution 
2

-
2
t

e . Again, in equation (18) the value of 
2

=p
p

π
T

ω
is the period that maximizes 

the Fourier spectrum of the antisymmetric Ricker wavelet. 

 ( )
2 2

2
1 42 2 -
2 3

2

4 2
= ( -3)

3 3
p

π t
p T

g
p p

a π t πt
u t e

β T T
 (9) 

in which β is a factor equal to 1.38 that enforces the above function to have a maximum – ap. 
The choice of the specific functional expression to approximate the main pulse of pulse–

type ground motions has limited significance in this work. In the past simple trigonometric 
pulses have been used by the senior author (Makris 1997[13], Makris and Chang 2000[14], 
Makris and Black 2004[21],[22]) to extract the time scale and length scale of pulse-type 
ground motions. For instance the heavy line in Figure 4 (bottom) which approximates the 
strong coherent acceleration pulse of the 228 component at the Rinaldi receiving station of the 
1994 Northridge earthquake is a one-sine acceleration pulse 

 ( ) = sin( ), 0 < <g p pu t a ω t pt T  (10) 

A mathematically rigorous and easily reproducible methodology based on wavelet analysis 
to construct the best matching wavelet on a given record (signal) has been recently proposed 
by Vassiliou and Makris (2009)[27,28]. 

5       OVERTURNING SPECTRA – SELF-SIMILAR RESPONSE 
Consider a free standing rigid block subjected to an acceleration pulse (like those shown in 

Figure 4) with acceleration amplitude ap and pulse duration 
2

=p
p

π
T

ω
. From equation (3) it 

results that the response of a rocking block subjected to an acceleration pulse is a function of 
five variables 

 ( ) ( )= , , , ,p pθ t f p α g a ω  (11) 

The six (6) variables appearing in Equation (11), θ [ ],  ap [L][T]-2, ωp  [T]-1,  p  
[T]-1, α [ ], g [L][T]-2  involve only two reference dimensions; that of length [L] and time 
[T]. According to Buckingham’s Π-theorem the number of dimensionless products with 
which the problem can be completely described is equal to [number of variables in Eq. (11)= 
6] – [number of reference dimensions = 2]. Herein we select as repeating variables the 
characteristics of the pulse excitation, ap and ωp. The four independent Π-terms are  
 
  (12) Π =θ θ

 Π = p
ω

ω
p

 (13) 

  (14) Π = tan( )α α

 Π = p
g

a
g

 (15)  

With the four dimensionless Π-Terms established equation (11) reduces to  
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 ( ) ( , tan ,pω α
θ t φ α )p

p g
=  (16) 

The rocking response of a rigid block when subjected to a horizontal base acceleration, , 
is computed by solving equation (3) in association with the minimum energy loss expressions 
given by equation (6) which takes place at every impact. The solution of the nonlinear 
differential equation given by (3) is computed numerically by means of a state-space 
formulation. The state vector of the system shown in Figure 2 (left) is merely 

( )gu t

 

( )
( )
θ t
θ t

y(t)
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦            (17)     

f(t) = y(t)and the time-derivative vector  is 

                             

        (18) 

 
The numerical integration of (18) is performed with standard Ordinary Differential 

olvers available in MATLAB (The Mathworks, 1992) [29]. 
Figure 5 shows the overturning acceleration spectrum of a rigid block with slende

14ο due to a one sine acceleration pulse (left) , a symmetric Ricker wavelet (cente

an

2

( )
( )

[sin[ sgn[ ( )] ( )] cos[ sgn[ ( )] ( )]g

θ t
u t

p α θ t θ t α θ t θ t
g

y(t)

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥− − +⎢ ⎥⎢ ⎥⎣ ⎦

−

Equations (ODE) s
rness α = 
r) and an 

tisymmetric Ricker wavelet (right). Figure 5 indicates that as Π = p
ω

ω
p

 increases the 

acceleration needed to overturn the object becomes appreciably larger than the one needed to 
uplift it. 
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Figure 5 Overturning acceleration spectra of a free standing block with slenderness α=14ο subjected to a one-sine 
acceleration pulse (left); a symmetric Ricker wavelet (center) and an antisymmetric Ricker wavelet (right) 
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The light grey (green in the colored version) area in all three bottom plots corresponds to 
stability (no overturning). Note that all three plots show that there are safe areas above the 
minimum overturning acceleration – a behavior that results from the strong nonlinear nature 
of the problem. Most importantly is that as the ratio Πω=ωp/p increases (shorter duration 
pulses or larger blocks) the minimum overturning acceleration needed to overturn the block 
increases appreciably. 

6      ROCKING RESPONSE OF A RIGID BLOCK STANDING FREE ON A 
SEISMICALLY ISOLATED BASE 

6.1       Linear Viscoelastic Isolation System 
We consider a rigid block with mass, m, slenderness α, and frequency parameter p, 

standing free on a seismically isolated base with mass mb, horizontal linear stiffness kb and 
viscous damping cb, as shown in Figure 2 (right). The equation of motion can be derived from 
equation (3) by substituting gu  with  where u is the displacement of the isolated base 
relative to the ground. Then equation (3) becomes  

 

+gu u

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )2 sin sgn cos sgngu t u t
t p t t t t

g
+⎧ ⎫⎪ ⎪⎡ ⎤ ⎡= − − + −⎨ ⎬⎤⎣ ⎦ ⎣⎪ ⎪⎩ ⎭

θ α θ θ α θ ⎦θ  (19) 

base 
elow isolators gives 

Moreover, given that there is no sliding, horizontal force equilibrium of the isolated 
b

 ( ) ( )- - = + + + +b b b g gk u c u m u u m u u x  (20) 

where x is the horizontal, relative to the base translation of the center of mass of the rigid 
block given by 
 

( ) ( )( ) ( ) ( )( ) ( )( )= sgn sin - sin sgn -x t θ t R a R θ t α θ t  (21) 

Equations (19) and (20) are expressed in terms of and which are explicit expressions of 
 

u θ
the four states of the system, ( ) ( ) ( ) ( ), , ,u t u t tθ tθ in ord r to solve the system of equations 
ex

e
plicitly. Accordingly, 

 

  ( )
( ) ) ( ) ( ) ( ) ( )

( )
( ( )

( )
22 2

2 2

- - 2 - sin + cos sin
= -

cos
1-

b nω u t ξω u t γR θ A t γRp A t A t
u t u t

γRp A
 (22) g

t
t

g

 ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )

( )

22 2
2

2 2

- - 2 - sin + cos sin
= - (sin + cos ( ))

- cos
n nω u t ξω u t γR θ t A t γRp A t A t

θ t p A t A t
g γRp A t

(23) 

 and where the term ( ) =A t ( ) ( )sgn -α θ t θ t =
+b

m
γ

m m
 and =

+
b

b
b

n reverses, the rotation of the 

k
ω

m m
 

Again, in this case we assume that when the angle of rotatio
block continues smoothly from point O to O’ and that the impact force is concentrated as a 
point force which applies on the new pivot point O’. The subtle difference between a rocking 
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block impacting a base with finite mass, mb, and a rocking block impacting a rigid foundation 

ith infinite mass, is that the translational velocity of the isolated b
finite jump during impact; whereas the translational velocity of the rigid foundation with 

finite mass remains the same during impact. 

 (24) 

where and  are the velocities (with respect to the isolated base) of a point mass due to 
tatio for d after the impact and  and  are the translational velocities o

(with respect to the ground) before and after the impact. Equation (24) gives 

 2

w ase also experiences a 

in
With reference to Figure 6, conservation of angular momentum around point O’ gives 

 ( ) ( )2 2
block block

dm dm1 1r v + u r v + u× = ×∫ ∫

1v
n be

2v
e anro f the base 1u 2u

( )1 1 22 sino o
block block

I mRb dm I dmy 1 ye r u e r uθ αθ θ− + × = +∫ ∫ ×  (25) 

or 

2 n1 1 1 22 sio oI mRb mhu I mhuθ α− + =θ θ + . (26) 

 

For a rectangular block 24
3oI mR= and  the above expression reduces to 

 2 2
1 1 1 2 24 6 sin 3 4 3R Rb hu R huθ αθ θ− + = +  (27) 

Equation (27) indicates that because of the finite mass of the isolation base one has to 
determine the translational velocity of the base 2u  after the impact. The extra equation that is 
needed to relate  and  is the cons  the linear momentum of the entire 
ystem(the rocking – translating block together with the translatin

direction. Accordingly 

1u 2u ervation of
s g base) along the horizontal 

 

 
Figure 6. Rigid block rocking on an isolated base before (l t) and after (right) the impact. ef
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  ( ) ( )1 1 2 2b bm m u mh m m u mhθ θ+ = + +  (28) 
or 
 

+

( ) ( )1 1 21 1u h u h 2γ γ θ γ γ θ+ + = + +             (29) 

From equations (27) and (29) one obtains 

 

 

( ) ( )
( ) ( )

2

2 12

4 cot 2 1
4 cot 4 1

γ α γ
θ θ

γ α γ
+ − +

=
+ + +

            (30) 

and 

 
( ) ( )2 1 2

6
4 cot 4 1

hu u 1
γ θ

γ α γ
= +

+ + +
       (31) 

Note that in the limiting case of a very havy base (mb→∞ or γ→0) equation (30) reduces to 
equation (6); while  = ; therefore the situation of a block rocking on a rigid foundation is  
recovered. From equation (30) the maximum value of the coefficient of restitution that allows 
rocking motion of a block rocking on an isolated base is 

 

1u 2u

( ) ( )
( ) ( )

22 2
2 4 cot 2 1

r
γ α γθ ⎛ ⎞+ − +⎛ ⎞

= = . (32) 

he expression of the coefficient of restitution given by (32
ivalent expression presented by Roussis et al. [5], which, to our knowledge is the only past 
lication that treats this problem correctly. 

Figure 7 plots the expression given by equation (32) for three values of γ=m/m
nd 1. Figure 7 indicates that when the mass of the base is finite, the rocking block looses 

d  to the same block rocking on a rigid foundation) 
due to the reason that the translational velocity of the isolated base experiences a finite jump 
t the instant of the impact. 

2
1 4 cot 4 1θ γ α γ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠

T ) is in agreement with an 
equ
ubp

b=0.01, 0.1 
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Figure 7. Coefficient of restitution, r, vs slenderness, α, for different values of γ=m/mb.  
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6.2    Overturning Spectra – Self-Similar Response 

We consider again that the ground excitation of the system shown in Figure 2 is 
characterized by a coherent acceleration pulse with amplitude ap and pulse duration 

( 2
p

p

T π
ω

= ). From equations (22) and (23) it results that the response of a rocking block 

standing free on an isolated base subjected to an acceleration pulse is a function of eight (8) 
variables 

 p  (33) 

 p  (34) 

Each of the coupled Equations (20) and (21) θ [ ], u  [L], ap [L][T]-2, Tp  [T], Tb 
[T], ζ [ ], p  [T]-1, α [ ], g [L][T]-2 , γ ensions
that of length [L] and time [T]. According to Buckingham’s Π-theorem the number of 
dimensionless products (Π-Terms) = [number of variables in Eq. (20) and (21) = 10] – 
[number of reference dimensions = 2]; therefore for the 2 DOF system described above, there 
are 10-2 = 8 Π–terms 

( ) ( ), , , , , , ,b pu t f p α g ω ξ γ α ω=

( ) ( ), , , , , , ,b pθ t f p α g ω ξ γ α ω=

  
[ ] involves only two reference dim

 
;   

 
2

maxΠ = p
m 

p

 Π = θ  

u ω
a

 (35) 

(36) θ

 Π = b
ω

p

ω
ω

 (37) 

 Π =ξ ξ  (38) 
 Π =γ γ  (39) 

Π = p
p

ω
p

 (40) 

 (41) 

 

( )Π = tana α 

 Π =g g
 (  

The rocking response of a rigid block standing free on an isolated base subjected to a 
horizontal base acceleration is computed by solving equations (21) and (22) in association 
with the minimum energy loss expression given by equation (32) which takes place at every 
impact. In this case, the state vector of the system shown in Figure 2 (right) for linear 
viscoelastic bearings is

pa
42)

  

 

nd the time derivative vector 

 

(43) 
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rturning acceleration spectra for a rigid block with slenderness α=10  
(top) and =20  (bottom) when it is standing free on a rigid foundation (left), and when it is 
isolated (center and right) and subjected to a symmetric Ricker wavelet. The viscous damping 
ratio of the bearings is ξ=5% and the mass ratio is γ=0.01 (heavy base). Figure 8 indicates that 
the presence of the isolation base increases the “static” overturning acceleration; however
isolated rigid blocks this “static” value remains nearly constant as the ratio 

 

(44) 

 
 

Figure 8 plots the ove ο

α ο

, for 
/p pω  incre

(moving to larger blocks or high frequency pulses). Consequently, the presence of an isolation
base removes appreciably from the dynamics of rocking blocks the fundamental property of 

 increases  the excitation pulse-period decreases. 
citation 

o  
inim

 as the 

minant 

e fault parallel component of the OTE record from the 1995 Aigio, Greece 
ar

ases 
 

increasing stability as their size or as
The findings of Figure 8 together with results due to an antisymmetric Ricker ex

are summarized in Figure 9 in terms of minimum acceleration overturning spectra. In all 
configurations the free-standing block on a rigid base (heavy dark line) beyond a certain value 
of ωp/p exhibits superior stability than the same block when isolated. Note also that f
symmetric (left plots) and antisymmetric (right plots) Ricker wavelets, the m
overturning acceleration of the free standing block on a rigid foundation exceeds the 
overturning acceleration of the isolated configuration at smaller values of ωp/p
slenderness of the block decreases (larger values of α).  

The practical use of the results shown in Figure 9 is illustrated by considering the do
pulses that capture the coherent component of the two earthquake records shown in Figure 10 

r both
um 

– that of th
e thquake (top) and that of the Gilroy – Array #6 record from the 1979 Coyote Lake , USA 
earthquake (bottom). For the FP OTE record shown in Figure 10 (top), Tp=0.6s while for the 
Coyote Lake record (bottom), Tp=0.9s. The corresponding values of the semidiagonal, R, 
beyond which non-isolated free standing blocks exhibit more stability than when seismic 
isolated are offered in Table 1 for two values of slenderness α=10o and α=20o and three values 
of Tb/Tp 2, 3 and 4. 

Table 1 indicates that free-standing objects appreciably smaller than ancient classical 
columns R≈(3.5m – 5.0m) are more stable when they stand free on a rigid foundation while 
seismic isolation would have been detrimental. 

The influence of the mass ratio 
bm m

γ =
+

 (m = mass of the rocking block, mb = mass of 

the isolated base) is shown in Figure 11 for a block with slenderness α=12ο, two values of 
Tb/Tp=2 and 3 and five values of γ. Figure 11 indicates that for values of ωp/p<6 (the range 
when it makes sense to isolate rocking blocks) all response curves for γ≤0.1 tend to the finite 
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Figure 8. Overturning spectra for rigid block without isolation (left), and with linear isolation with Tb/Tp=2 
(center) and Tb/Tp=3 for slenderness α=10o (top) and α=20o (bottom) for a symmetric Ricker excitation.  
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Figure 10. Comparison of the minimum acceleration needed to overturn a rigid block of slenderness α=10o (top) 
and α=20o (bottom) resting on rigid ground and on an isolated bases whith various isolation frequencies when 
excited by a symmetric Ricker pulse (left) or an antisymmetric Ricker pulse (right). 
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Figure 11 Acceleration time histories during the (Top) 1995 Aigion, Greece earthquake – fault parallel 
component of the OTE record together with a symmetric Ricker wavelet; and (bottom) 1979 Coyote Lake 
earthquake – 230 component of the Gilroy Array #6 record together with an antisymmetric Ricker wavelet. 

 Tb/Tp=2 Tb/Tp=3 Tb/Tp=4 
  Rcritical (m)  Rcritical (m)  Rcritical (m) 

 Tp (s) Tb (s) 10o 20o Tb (s) 10o 20o Tb (s) 10o 20o 
Aigio, OTE FP, 1995 0.6 1.2 0.32 0.22 1.8 1.96 1.58 2.4 2.79 1.78 

Coyote Lake, Gilroy #6 
230, 1979 0.9 1.8 1.85 1.31 2.7 5.08 4.24 3.6 7.83 4.48 

Table 1. Length of the semidiagonal, R, of rigid blocks beyond which they exhibit superior stability when they 
stand free on a rigid base (no isolation). 

limit where the response of the heavy base is not influenced by the response of the light 
rocking block (decoupled system). Consequently for the case where γ≤0.1 the mass ration γ 
drops out of consideration (γ=0) and it can be eliminated from equations (33) and (34) – a 
conclusion that shows that the rocking response of a rigid block standing free on an isolated 

its a “complete similarity” in terms of the mass ratio 
b

m
m m

γ =
+

. base exhib
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uilibrium of the isolated base 

6.3     Bilinear isolation system 
When the behavior of the isolation system is bilinear – a very good idealization for the 

behavior of spherical sliding bearings and lead rubber bearings, the equation of the rocking 
block is again given by equation (19) whereas, horizontal eq
below isolators gives 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )b b g gk u t Q z t m u t u t m u t u t x t− − ⋅ = + + + +  (45) 
here kb is the second slope of the bilinear idealization, Q is the strength of the system (force 

at zero displacement), x(t) is the horizontal relative to the base translation of the center of 
mass of the rigid block and z(t) is a dimensionless parameter of the Bouc-Wen model given 
by  

 

w

( ) ( ) ( ) ( ) ( ) ( ) ( )( )11 n n

y

z t u t γ u t z t z t βu t z t
u

−
= − − , (46) 
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where uy is the yield displacement of the bilinear behavior. 

In this paper our study concentrates in the case where uy is very small (uy≈0.25mm). In 
this case the bilinear model is the mathematical description of the spherical sliding bearing 
with coefficient of friction μ, in which case the strength Q=μ(m+mb)g. Recent studies (Makris 
and Chang [14], Makris and Vassiliou [30]), have demonstrated that the response of isolated 
structures is merely indifferent to the exact value of the yield displacement, therefore the 
results obtained in this paper are also valid for isolation systems that use lead rubber bearings 
(larger values of uy) as long as they experience the same second slope and the same strength. 
Given equations (45) and (46), together with equation (19) the state vector of the system 
shown in Figure 2 (right) with spherical sliding bearings is:  
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gs exhibiting a strength Q, the term 

μg in the 1st and 5th component of the 
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In the case where the base is isolated on lead rubber bearin

( )ty  vector is replaced with 
b

Q
m m+

. 

Figure 12 plots overturning spectra of a rigid block with slenderness α=16  standing 
free on a base that is isolated on single concave spherical sliding bearings with coefficient of 
friction μ=5% when subjected to a symmetric Ricker wavelet next to the overturning 
acceleration spectra when the base is isolated on linear viscoelastic bearings with coefficient 
ξ=5%. The response

ο

 between the two isolation configurations is very similar. For 
ompleteness, Figure 12 (bottom) shows the minimum overturning acc

se that is isolated on double concave spherical sliding 
earings is presented in the paper by Vassiliou and Makris [32]. 

 

c eleration associated 
with the two isolation configurations together with the corresponding spectrum of a rigid 
block rocking on a rigid foundation (heavy dark line). The near-vertical growth of the heavy 
dark line indicates that regardless how flexible the isolation system is, for values of ωp/p>6, 
the rigid block rocking on a rigid foundation has superior stability. The seismic response of a 
rigid block standing free on a ba
b
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Figure 13. Comparison of overturning spectra (top) and minimum acceleration overturning spectra (bottom) of a 
rigid body with slenderness `a=16o when the supporting base is isolated on viscoelastic bearings with damping 

tio ξ=5% (left) and single concave spherical sliding bearings with coefficient of friction 5% (right). The 
citation is a symmetric ricker wavelet and the mass ratio γ= 0.01 

7    THE EFFECT OF SEISMIC ISOLATION ON ANCIENT CLASSICAL COLUMNS 
The seismic response analysis of rocking blocks standing free on an isolated base has 

been studied in this paper by using as ground excitation, acceleration pulses described either 
by the symmetric or the antisymmetric Ricker wavelets. The acceleration amplitude, a
duration Tp of any distinct acceleration pulse allow the use of the dimensional analysis 
presented in this work and the derivation of the associated Π-products which improve 
appreciably the understanding of the physics that governs the problem together with the 
organization and presentation of the response quantities in a most meaningful way. 
Nevertheless, in order to stress the main finding of this study – that for large blocks (say ωp/p 
> 6) the use of seismic isolation reduces the seismic stability of free-standing rocking 
structures – we examine the seismic response of two free standing slender blocks which have 

he 
columns of the temple are 5.95m high, the diameter of the base drum is 1.11m (resulting in 
slend

g from the ancient times. 

ra
ex

p, and 

the dimensions of the columns of the peristyle of the Temple of Appolo at Bassae and the 
Temple of Zeus at Nemea, both located in Peloponese, Greece. 

The Temple of Apollo at Bassae is a fifth Century BC doric style structure. T

erness α=0.1844 and in size R=3.03m). The number of drums in each column is not 
constant for all the columns and is controlled by the size of the sound rock that was available 
in the ancient limestone quarry. The temple is still standing but has suffered from erosion of 
the building material caused by the adverse climatic conditions at the site (1000m altitude 
a.s.l.) and from the tilting of some columns due to differential settlement of the foundations 
[32]. 

The Temple of Zeus at Nemea was built in the late fourth century BC. The columns of 
this temple are much taller and more slender than the ones of the temple at Bassae, reaching a 
height of 10.33 m. All columns consist of 13 drums and the base drum diameter is 1.52 m. 
The resulting slenderness is α=0.1461 and R=5.22m. This slenderness ratio is the smallest 
among the ancient Greek temples of continental Greece. Only one column of the peristyle and 
two columns of the pronaos of the Temple of Zeus remain standin
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While the columns from the two abovementioned Temples are multidrum, this 
investigation proceeds by considering that they are monolithic free standing blocks. Past 
studies led by the senior author (Konstantinidis and Makris, 2005 [33]) have shown that 
multidrum columns exhibit slightly more controlled response than the equal size monolithic 
configuration.  

Our investigation proceeds by examining the response of the two abovementioned 
columns when subjected to the 11 historic records shown in Table 2. The columns are 
considered to stand free on a rigid foundation, or standing free on a seismic isolated base with 
isolation periods Tb=2s, 2.5s and 3s and linear viscous damping ξb=0.1. 

Table 3 summarizes the results from the nonlinear time history analysis. The column from 
the Temple of Apollo at Bassae (R=3.03m α=0.1844) when standing free on a rigid 
foundation survives all the induced records, while when isolated on bearings that offer an 
isolation period, Tb=2.0s, it topples in all but one records. As the period of the isolation 
system increases the column survives additional records. Similarly, the column for the 
Temple of Zeus a Nemea (R=5.22m, α=0.1461) when standing free on a rigid foundation 
survives 9 out of the 11 records, while when isolated on bearings that offer an isolation period  

(Mw) 
e 

(km) PGA (g) PGV (m/s) ap (g) Tp  (s) 

Table 2. Earthquake records used for the dynamic response analysis of the column. 

Earthquake Record Station Magnitude Distanc

1966 Parkfield CO2/065 6.1 0.1 0.48 0.75 0.41 0.6 
1977 Vrancea Bucharest 7.2 160 0.20 0.74 0.20 2.1 

1979 Imperial Valley El Centro #6 / 230 6.5 9.3 0.41 0.65 0.14 3.1 
1980 Irpinia, Italy Sturno/270 6.5 32 0.36 0.52 0.11 3.0 

1986 San Salvador Geotech Investig. 
Center 5.4 4.3 0.48 0.48 0.34 0.8 

1987 Superstition Hills Parachute Test 
Site/225 6.7 0.7 0.45 1.12 0.30 2.0 

1992 Erzican, Erzincan/EW 6.9 13 0.50 0.64 0.34 0.9 

1994 Northridge Jensen Filter 
Plant/022 6.7 6.2 0.57 0.76 0.39 0.5 

1995Kobe Takarazuka/000 6.9 1.2 0.69 0.69 0.50 1.1 
1999 Chi-Chi Taiwan CHY101/E 7.6 11.2 0.35 0.71 0.10 3.5 
1999 Chi-Chi Taiwan CHY128/N 7.6 9.7 0.17 0.69 0.09 4.5 

 
Table 3. Stability results for the rigid blocks corresponding to the columns of the Temples of 
Bassae and Nemea when subjected to the 11 earthquakes. (  = no overturn,  = overturn) 

  Columns from the Temple of Apollo at 
Bassae (R=3.03m α=0.1844) 

Columns from the Temple of Zeus at 
Nemea (R=5.22m, α=0.1461) 

Earthquake Record Station Non-Isolated TI=2s TI=2.5s TI=3s Non-Isolated TI=2s TI=2.5s TI=3s 
1966 Parkfield CO2/065         
1977 Bucharest          

1979 Imperial Valley El Centro #6 / 230         
1980 Irpinia, Italy Sturno/270         
1986 San Salvador Geotech Investig.         Center 

1987 Superstition Hills Parachute Test 
Site/225         

1992 Erzican, Erzincan/EW         
1994 Northridge Jensen Filter 

Plant/022         
1995Kobe Takarazuka/000         

1999 Chi-Chi Taiwan CHY101/E         
1999 Chi-Chi Taiwan CHY128/N         
 



Michalis F. Vassiliou and Nicos Makris 
 
Tb=2.

he stability of tall slender blocks is because the presence of the isolation 
system

a subjected to the 022 
co

0s it topples in all records  
Again, as the isolation period increases the column survives additional records; 

however, even when the isolation period is Tb=3.0s the column from the Temple of Zeus at 
Nemea survives only 3 out of the 11 records. The reason that seismic isolation is so 
detrimental to t

 lengthens the duration of the pulses while at the same time increases the number of the 
significant induced cycles. 

As an example, Figure 13 plots the response of a rigid block with the dimensions of a 
column of a column from the peristyle of the Temple of Zeus at Neme

mponent of the Jensen Filter Plant record from the 1994 Northridge earthquake when is 
standing free on a rigid foundation (left) and when standing free on an isolated base with 
Tb=3.0s (right). 
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8    CONCL
er respo  ana s and stability of slender rigid blocks standing 

free on a seismical base is investigated in depth. The paper examines the rocking 
response when the isolated base is supported: (a) on linear viscoelastic bearings, (b) on single 
concave and (c) on double concave spherical sliding bearings. Our study revisits the equations 
of settl tter of conservation of linear mome
syste s the nslat  bloc gether wit e tra g isolated base. This 
a  a c  expr on (e 32) r the axim  value of the coefficient 

ng at allo  rock  mo  of ock ing an is ted e 
nd is concluded that this value is always smaller (more energy is dissipated) than the 

e resp f a rigid block with the dimensio
2

of a column from the peristyle of 
emple of Zeu Nemea subje d to the 02  comp nent of the Jens n Filter Plant reco  from t  1994

thridge earthq hen is standi ee o gid datio ft) a hen st ng on an i lated
e with Tb=3.0s

USIONS 
In this pap  the seismic nse lysi

ly isolated 

motion and es the ma ntum of the entire moving 
m that i rocking – tra ing k to h th nslatin

nalysis leads to losed form essi q. ( ) fo  m um
of restitution duri  impact th ws ing tion a bl rock on ola bas
a
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2
21 sin

2
r 3maximum value, α⎛ ⎞= −⎜ ⎟

⎝ ⎠
which is associated with a rigid block rocking on a rigid 

(non-isolated) foundation. Our extended parametric analysis concludes that seismic isolation 
is beneficial for small blocks. This happens because seismic isolation increases the “static” 
overturning acceleration; however for isolated rigid blocks this “static” value remains nearly 
constant as the ratio ωp/p increases (moving to longer blocks or higher frequency pulses). 
Consequently, while the presence of an isolation base increases the “static” overturning 
acceleration it removes appreciably from the dynamics of rocking blocks the fundamental 
property of increasing stability as their size increases or the excitation pulse period decreases. 
This behavior prevails regardless whether the rocking block is supported on an isolated base 
with linear viscoelastic or spherical sliding bearings with single or double curvaruture. 
The longer the isolation period of the supporting base is, the more stability is offered to the 
rocking blocks; however large blocks subjected to moderate period pulses (say ωp/p>6) 
exhibit superior stability when they stand free on a rigid base (non-isolated) rather when they 
are isolated even on isolation systems with very long periods. This remarkable result suggests 
that free standing ancient classical columns exhibit superior stability as they are built 
(standing free on a rigid foundation) rather than if they were seismic isolated. Consequently, 
seismic isolation is not recommended as a technology to improve the seismic stability of 
ancient Greek or Roman temples. 
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