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Abstract. This paper studies the propagation of plane harmonic waves in unbounded media 
discretized by the standard twenty-node hexahedral finite element. The element stiffness 
matrix is split into basic and higher order components which are obtained from mean and 
deviatoric strain fields, respectively. This decomposition is applied to the elastic energy. 
Based on the properties of the higher order energy, two values of the wave number are 
selected. Depending on the desired precision one of those values can be used as optimum 
cutoff wave number to properly capture a wave field.
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1 INTRODUCTION
The wave propagation in solids is a so broad scientific subject that analytical solutions to 

the governing equation of motion exist for just the simplest cases and only approximate 
solutions are feasible for the others. One method for obtaining approximate solutions is to use 
numerical procedures, such as the finite element method, which often introduce phenomena 
that are not present in the physical system [1]. In references [2, 3] the wave propagation in 
solids is analyzed through. 

The governing equation of motion for a homogeneous isotropic elastic solid may be 
summarized as

ufuu   2)( (1)

where: the elastic constants for the material are  and , the Lam� constants; , the mass 
density per unit volume of the material; u, the displacement vector; f, the body force per unit 
mass of material.

The Lam� constants can be expressed as
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where: E, Young�s modulus; , Poisson�s ratio for the material.
Let us consider the Helmholtz decomposition of the displacement vector as the gradient of 

a scalar and the curl of a zero divergence vector,

0,  HHu (3)

The scalar potential  is associated with the dilatational part of the disturbance, and the 
vector potential H with the rotational part.

By considering Eq. (3), the governing equation of motion Eq. (1) is decomposed as two 
simplified wave equations, in the absence of body forces,
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Bulk wave propagation refers to wave propagation in unbounded media; guided waves are 
those that require a boundary for their existence, such as surface waves, Lamb waves, and 
interface waves. This paper will focus on bulk wave propagation in unbounded media. By 
considering Eq. (4) we deduce that the dilatational and rotational bulk waves propagate 
without interaction in unbounded media with the velocities cL and cT, respectively. These two 
types of waves are coupled only on the boundary of the elastic solid, an obvious consequence 
of satisfying the boundary conditions. The dilatational and rotational bulk waves are also 
called primary (P) and secondary (S) waves, respectively. 

In this paper we consider the propagation of uniform plane harmonic waves,

  tκiA  rnau expˆ (6)
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where: A, amplitude of the wave; , radial frequency; , wave number; â , polarization 
vector, unit vector indicating the direction of the particle displacement; n, wave normal, unit 
vector indicating the direction of the wave propagation; r, position vector.

The wave number and the radial frequency will be

f
Tc



 22,2

 (7)

where: , wavelength; c, phase speed of the continuum; T, period of wave; f, cyclic frequency.
The longitudinal plane waves, where the displacements are in the direction of the wave 

normal and only normal stresses are acting along the wave front, are dilatational waves;
nevertheless, the transverse plane waves, where the displacements are perpendicular to the 
wave normal and only shearing stresses are acting along the wave front, are rotational waves. 

For isotropic elastic material, the relationship between strains and stresses, in the absence 
of initial strains and stresses, can be expressed in matrix form as

   t
yzxzxyzyx

t
yzxzxyzyx  E (8)

where E is the elasticity matrix,
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By considering Eq. (5), the elasticity matrix also can be expressed in the forms
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where: 21p , 1q , 2 r and )21()22()2(22   TL cc .
Since 210  always, we deduce the inequality TL cc  . 

The forms of the elasticity matrix given by the Eq. (10) will be useful to analyze the 
propagation of longitudinal and transverse waves, respectively.

This work essentially extends the author�s previous work on the eight-node quadrilateral 
and the six-node triangle [4, 5]. The elastic media is discretized by the standard twenty-node 
hexahedral finite element [6] with consistent mass matrix [7]. By splitting the strain-nodal 
displacements matrix into mean and deviatoric components
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the element stiffness matrix will be
e
h

e
b

e KKK  (13)
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where: e
bK , basic stiffness matrix; and e

hK , higher order stiffness matrix.
In this case the element stiffness matrix is decomposed in energy-orthogonal form [8]. The 

basic and higher order matrices are related to the mean and deviatoric strain fields, 
ee

d
e
d

eee xBexBe  , (16) 

respectively.
The concept of energy-orthogonal stiffness matrix used in this paper was explicitly 

introduced by Bergan and Nyg�rd in the context of the Free Formulation [9], and by Felippa 
within the framework of the Parametrized Variational Principles [10]. 

The decomposition Eq. (13) holds for the complete model whenever e
bK and e

hK are 
independently assembled,

hb KKK  (17)

This decomposition is also applied to the elastic energy of the finite element assemblage,

hb UUU  (18)
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where: bU , basic elastic energy; hU , higher order elastic energy; bF and hF , basic and higher 
order forces vector, respectively. 

In this paper the dispersion properties and the elastic energy of both longitudinal and 
transverse waves are computed for the unbounded media discretized by regular meshes. If the 
exact solution of the problem consists of a constant stress state, the higher order elastic energy 
vanishes over each element. Similarly, as the solution converges on account of mesh 
refinement, the element energy is increasingly dominated by the basic energy. This behavior 
has been numerically verified for the standard twenty-node hexahedral finite element in the 
context of modal analysis [11].

The above heuristic argument shows that the higher order elastic energy may be regarded 
as a local error indicator [10]. Although this assumption is based largely on numerical 
experiments motivates to explore the relationship between the higher order elastic energy and 
the numerical dispersion introduced by the finite element method. 

In this paper the behavior of the higher order elastic energy is investigated and based on its 
properties two values of the wave number are selected as reference values. The use of one of 
those values as optimum cutoff wave number to properly capture a wave field is investigated.
The concept is extended to define an optimum cutoff frequency to properly capture the natural 
modes of a solid. 

The distinctive contributions of this paper over the author�s previous works [4, 5] are 
related to the consideration of hexahedral elements both moderately and highly distorted. 
These ones could be useful for the 3D modelling of structural elements.
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2 WAVES IN UNBOUNDED MEDIA

2.1 Characteristic equations
In a solid discretized by the finite element method the equations of equilibrium governing 

its linear dynamic response may be cast in matrix form 

fKxxCxM   (21)

where M, C and K are the mass, damping, and stiffness matrices; f is the external load vector; 
and x is the displacement vector of the finite element assemblage [12].

The homogeneous and isotropic unbounded media is discretized by a regular mesh of 
standard twenty-node hexahedral elements, Figure 1. The nodal lattice has four nodes per unit 
cell which are labeled A, B, C and D, respectively. The node A is a corner one, whereas the 
nodes B, C and D are mid-side ones. Specifically, the elements analyzed are of brick 
geometry. Different meshes with the same element volume can be obtained by changing the 
aspect ratio parameter, ; where, 1   > 0. The finite element analysis will be performed by 
using the rectangular coordinate system : XYZ.

2b/

2b

X

Y
Z

2bAC

DB

Figure 1: Regular mesh of standard twenty-node hexahedral elements and unit cell.

The characteristic equations can be found assuming uniform plane harmonic waves with 
different amplitudes in each node of the unit cell,

  4,3,2,1,cosˆ  itAi  rnau (22)

where: 1A , 2A , 3A and 4A , wave amplitudes in the nodes A, C, B and D, respectively.
The wave normal n and the assumed polarization vector â are related to the rectangular 

coordinate system p, obtained from  by three successive rotations defined by the Euler 
angles, Figure 2. For longitudinal waves, pˆ ian  ; for transverse waves, pˆ ja  or pˆ ka  .
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The components of the displacement vector u with respect to the coordinate system  are 
obtained from the ones respect to the coordinate system p by

   t
ppp

tt wvuwvu R (23)

The transformation matrix will be

CBAR  (24)

where
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are the transformation matrices for the rotations   a, a b and b  p, respectively. 
The three Euler angles are called the precession , the nutation , and the spin  [13].
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Figure 2: Rectangular coordinate transformation corresponding to three successive rotations defined by the Euler 
angles.

By considering the homogeneous part of Eq. (21) with damping neglected and substituting 
the assumed harmonic solutions we obtain the characteristic equation for each node of the unit 
cell by the equilibrium of nodal forces into the direction of the particle displacement [14].

The four characteristic equations form a system of homogeneous algebraic equations,
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where: m, dimensionless wave number; b, half of the cubic element size;  , dimensionless 
frequency of the discretized media.

The dimensionless wave number will be  LL bm  and TT bm  for longitudinal 
and transverse waves, respectively.  From the continuum frequencies and Eq. (7) we obtain 
the relationship TLLT ccmm  . From TL cc  we deduce the inequality TL mm  .

2.2 Dispersion equations
The system of homogeneous algebraic equations given in Eq. (26) has a non-trivial 

solution only if the matrix Z is singular; that is,

  0),,,,,,(det mZ (29)

By considering Eq. (27), from Eq. (29) we obtain the quartic equation

001
2
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3
4  dqdqdqdq (30)

where: 2q ; ),,,,,( md i , coefficients obtained from ija and ijb . 
Either of Eq. (29) and (30) is called a characteristic frequency equation for plane wave 

propagation.
It is an important fact that the n zeroes of a polynomial of degree 1n with complex 

coefficients depend continuously upon the coefficients [15]. Thus, sufficiently small changes 
in the coefficients of a polynomial can lead only to small changes in any zero. However there 
is no simple way to define a function which takes the n coefficients (all but the leading 1) of a 
monic polynomial of degree n to the n zeroes of the polynomial, since there is no natural way 
to define an ordering among the n zeroes. In the case of the quartic polynomial Eq. (30), this 
problem has been solved by obtaining the zeroes in closed form. Then, the components 

4,3,2,1),,,,( 3210  iddddqq ii (31)

or, alternatively,

4,3,2,1),,,,,,(  imii  (32)

will be continuous functions precisely defined. They are called dispersion equations. 
Obviously, we suppose that the coefficients ),,,,,( md i are also continuous functions. 

Substituting Eq. (32) into Eq. (26), the wave amplitudes for each dispersion equation are 
produced. In this work, each set of linear algebraic equations is numerically solved by using 
the singular value decomposition method SVD [16]. 

The range of dimensionless wave number values where each dispersion equation 
represents the propagation of acoustic waves in the discretized media will be called the 



Francisco Jos� Brito Castro

8

acoustical branch of the dispersion equation. In order to determine the acoustical branches, a 
preliminary constraint condition over the dimension of the null space of Z must be imposed,

  1)(dim ZN (33)

The constraint condition Eq. (33) implies that the subspace of solutions to Eq. (26) must be 
one-dimensional.  In this case the vector of wave amplitudes A is arbitrary to the extent that a 
scalar multiple of it is also a solution. Then the following constraint conditions are imposed,
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The constraint condition Eq. (34) implies that the four nodes on the unit cell vibrate along 
the same direction. In molecular physics, condition Eq. (34) is called the restriction of the 
lattice spectrum to the acoustical branch [17]. Obviously, if the constraint condition Eq. (33) 
is not imposed, the constraint condition Eq. (34) is meaningless. 

From Eq. (28) we obtain both the phase velocity and group velocity of the discretized 
media,

m
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m
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Therefore, the constraint condition Eq. (35) is equivalent to

0, dgc (37)

It can be proven that for general periodic motion in lossless or low loss media the energy 
propagates with the group velocity [2]; therefore, the constraint condition Eq. (37) imposes 
that the energy propagates into the wave direction.

From this point, for each dispersion equation only the acoustical branch will be considered. 
This one represents the physically admissible solution for mechanical wave propagation. 

It must be recall that the group velocity of the continuum will be equal to the phase 
velocity because the waves propagate non-dispersively. Nevertheless, for the dispersive 
discretized media the group velocity will be different from the phase velocity; therefore, the 
velocity of energy transport will be different from the phase velocity. As a consequence, when 
we consider the numerical dispersion associated with the finite element spatial discretization, 
not only the effect over the phase velocity must be analyzed but also the effect over the group 
velocity or velocity of energy transport. 

2.3 Indicators of dispersion
By considering Eq. (36), the indicators of the dispersion associated with spatial 

discretization that is introduced by the finite element model are defined as
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These indicators consider the effect of the spatial discretization over the wave velocity and 
the velocity of energy transport, respectively. The indicators of spatial dispersion Eq. (38) and 
Eq. (39) are computed versus the dimensionless wave number both for longitudinal and 
transverse waves. Specifically, three test problems are analyzed in this paper, Figure 3. 

For the Test A, the wave normal has direction parallel to two faces of the brick, and the 
polarization vector has direction either parallel to or perpendicular to those faces. Depending 
on the selected faces it can be distinguish three different cases:

�.900;�90,�90:
�.900;�90,�0:
�.900;�0,�0:









YZATEST
XZATEST
XYATEST

(40)

Xp

Yp

Zp


TEST C

XpYp

 Zp

TEST A-YZ
Xp

Yp

Zp

TEST B-XY

X

Y

Z

Figure 3: Test problems to evaluate the numerical dispersion. 

For the Test B, the wave normal has direction parallel to a plane that diagonally intesects 
two opposite faces of the brick, and the polarization vector has direction either parallel to or 
perpendicular to that plane. Depending on the selected faces it can be distinguish three 
different cases:
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�.900;�90,1: 2
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For the Test C, the wave normal has direction parallel to a plane that diagonally intesects 
three faces of the brick, and the polarization vector has direction either parallel to or 
perpendicular to that plane,

�.1800;1,1: 2
2

2  





 tgtgCTEST (42)

For the Test C, a particular case of Eq. (38) is plotted in Figure 4. Three values of the angle 
of wave propagation are considered in order to represent the anisotropy induced by the spatial 
discretization. The dispersion associated with spatial discretization is clearly displayed as the 
dimensionless wave number increases. 

It must be remarked that for the Test A and  = 1, the values of Eq. (38) and Eq. (39) 
obtained both for longitudinal waves pˆ ian  and transverse waves pˆ ja  are coincident 
with the ones obtained for the eight-node square element [4].

0 0.1 0.2 0.3 0.4 0.5
1

1.01

1.02

1.03

INDICATOR OF DISPERSION
PHASE VELOCITY

mT

TEST C: S-waves, OYp.  = 0.25
 = 1/2

1:   0�

2:   50�

3:   90�

1 2
3

Figure 4: Test C. Indicator of spatial dispersion associated to the phase velocity versus dimensionless wave 
number for three values of the angle of wave propagation.

2.4 Higher order elastic energy at the unit cell
By considering the decomposition Eq. (18), in this paper we explore the relationship 

between the higher order elastic energy at the unit cell and the discretization error introduced 
by the finite element method. Assuming the harmonic waves Eq. (22), we obtain the higher 
order energy at the unit cell as the sum of the component associated with the corner node A,

),,,,,,()2(2  mFbcU A
h

A
h  (43)
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and the component associated with the mid-side nodes B, C and D,

),,,,,,()2(2  mFbcU M
h

M
h  (44)

where: Tt , dimensionless time.
The period-averaged values,
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are defined as the specific higher order corner energy and the specific higher order mid-side 
energy, respectively. The sum of these two components is the specific higher order energy at 
the unit cell. 

The specific higher order corner and mid-side energies are computed versus the 
dimensionless wave number both for longitudinal and transverse waves. For the Test C, a 
particular case is plotted in Figures 5 and 6.

0 0.1 0.2 0.3 0.4 0.5 0.6

-0.4

-0.3

-0.2

-0.1

0

0.1

HIGHER ORDER CORNER ENERGY

mT

TEST C: S-waves, OYp.
 = 0.25
 = 1/2

1:   0�

2:   50�

3:   90�

1

2

3

3

Figure 5: Test C. Specific higher order corner energy versus the dimensionless wave number. 

We focus on the specific higher order corner energy. It is observed that the computed value 
decreases from zero as the dimensionless wave number increases until it reaches a minimum, 
then increases and eventually becomes positive. The sign-reversal value depends on the three 
Euler angles, the Poisson�s ratio and the aspect ratio parameter,

),,,,(),,,,,(),,,,,( 000  TZTYL mmm (47)

The first derivative of the specific higher order corner energy with respect to the 
dimensionless wave number is also computed. For the Tests C, a particular case is plotted in 
Figure 7. It is observed that the computed value decreases from zero as the dimensionless 
wave number increases until it reaches a minimum, then increases and eventually becomes 
positive. Obviously, the second derivative changes from negative to positive when the first 
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derivative reaches its local minimum. The sign-reversal value depends on the three Euler 
angles, the Poisson�s ratio and the aspect ratio parameter, 

),,,,(),,,,,(),,,,,( 111  TZTYL mmm (48)        

),,,,(),,,,,(),,,,,( 222  TZTYL mmm (49) 
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Figure 6: Test C. Specific higher order mid-side energy versus the dimensionless wave number. 
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Figure 7: Test C. First derivative of the specific higher order corner energy versus the dimensionless wave 
number.
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By also considering the behavior of the specific higher order mid-side energy, we can 
conclude that the components of the specific higher order energy at the unit cell satisfy the 
inequalities,

000,0 mmifFF M
h

A
h  (50)

100,0 mmifF
m

F
m

M
h
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
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

 (51)
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

 (52)

where 0m , 1m and 2m are the values defined in Eq. (47)-(49). 
Obviously, the specific higher order energy is always positive; nevertheless, as the 

discretization error decreases with the dimensionless wave number, it vanishes as a 
cancellation of two components, the positive mid-side energy and the negative corner energy. 
This behavior, which is called the cancellation property of the higher order energy at the unit 
cell, already has been observed by the author for the eight-node quadrilateral and the six-node 
triangle [4, 5]. Therefore, as the discretization error decreases, the higher order energy 
components tend to be equal but opposite in sign. By considering this evolution to the 
symmetry and the inequalities Eq. (50)-(52) we can conclude that the dimensionless wave 
numbers Eq. (47)-(49) determine behavioral ranges for the specific higher order energy. By 
considering this behavior, in this paper we propose to define Eq. (48) as the first reference 
wave number, and Eq. (49) as the second reference wave number. Both reference wave 
numbers basically depend on the three Euler angles and the aspect ratio parameter, and they 
exhibit a weak dependence respect to the Poisson�s ratio.

For a brick with cubic geometry, and for the Test A, in Tables 1 and 2 some computed
values of the first and the second reference wave number are presented.

TEST A   1  = 0.45  = 0.33  = 0.25  = 0.05

 = 0� P, OXp
S, OYp
S, OZp

0.3411
0.3411
0.3411

0.3411
0.3411
0.3411

0.3411
0.3411
0.3411

0.3411
0.3411
0.3411

 = 25� P, OXp
S, OYp
S, OZp

0.3669
0.3689
0.3679

0.3738
0.3629
0.3679

0.3738
0.3629
0.3679

0.3728
0.3639
0.3679

 = 37.5� P, OXp
S, OYp
S, OZp

0.3877
0.4154
0.3857

0.3897
0.3916
0.3857

0.3887
0.3887
0.3857

0.3877
0.3867
0.3857

 = 45� P, OXp
S, OYp
S, OZp

0.3976
0.4273
0.3897

0.3906
0.3996
0.3897

0.3897
0.3966
0.3897

0.3887
0.3926
0.3897

Table 1: Test A. Dimensionless wave number for which the sign of the first derivative of the specific higher 
order corner energy changes from negative to positive.

For non-cubic brick, and for each of the test problems, some computed values of the first 
and the second reference wave number are plotted in Figures 8-10. It must be remarked that 
the strong numerical anisotropy induced by the non-cubic brick results in broad variations of 
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both reference wave numbers versus the angle of wave propagation. Clearly, the numerical 
anisotropy increases as the aspect ratio parameter decreases.

TEST A   1  = 0.45  = 0.33  = 0.25  = 0.05

 = 0� P, OXp
S, OYp
S, OZp

0.1813
0.1813
0.1813

0.1813
0.1813
0.1813

0.1813
0.1813
0.1813

0.1813
0.1813
0.1813

 = 25� P, OXp
S, OYp
S, OZp

0.1951
0.1931
0.1931

0.1951
0.1912
0.1931

0.1941
0.1922
0.1931

0.1941
0.1922
0.1931

 = 37.5� P, OXp
S, OYp
S, OZp

0.2100
0.2050
0.2021

0.2060
0.2001
0.2021

0.2050
0.2001
0.2021

0.2040
0.2001
0.2021

 = 45� P, OXp
S, OYp
S, OZp

0.2129
0.2080
0.2030

0.2090
0.2021
0.2030

0.2080
0.2021
0.2030

0.2060
0.2021
0.2030

Table 2: Test A. Dimensionless wave number for which the sign of the second derivative of the specific higher 
order corner energy changes from negative to positive.
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Figure 8: Test A-YZ. Reference wave numbers versus the angle of wave propagation.

Both reference wave numbers decrease as the angle of wave propagation exhibits a higher 
numerical dispersion, as it is observed for the Test C in Figures 4, 5 and 7. By considering 
this property, we investigate the use of one of the reference wave numbers as optimum cutoff 
wave number to properly capture the harmonic wave.

For the Test C, in Figures 11 and 12 we compute the maximum of Eq. (38) and the 
maximum of Eq. (39), respectively, for dimensionless wave number up to reach the first 
reference value. In this case, we consider that the harmonic wave is only properly captured 
from the wave velocity standpoint. In Figure 13 we compute the maximum of Eq. (39) for 
dimensionless wave number up to reach the second reference value. In this case, we consider 
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that the harmonic wave is properly captured also from the velocity of energy transport 
standpoint. Similar results have been obtained for the Test A and the Test B.

We can conclude that, depending on the desired precision, the reference wave numbers 
could be used as optimum cutoff wave numbers tuned to taking into account the effect of the 
numerical anisotropy induced by the spatial discretization. The tuning effect can be clearly 
observed for the Test C by considering Figures 4, 5 and 7.
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Figure 9: Test B-XY. Reference wave numbers versus the angle of wave propagation.
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Figure 10: Test C. Reference wave numbers versus the angle of wave propagation.
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Figure 11: Test C. Maximum of the indicator of spatial dispersion associated to the phase velocity for 
dimensionless wave number up to reach the first reference value versus the angle of wave propagation.
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Figure 12: Test C. Maximum of the indicator of spatial dispersion associated to the group velocity for 
dimensionless wave number up to reach the first reference value versus the angle of wave propagation.

The mean values of the first reference wave number and the ones of the second reference 
wave number are computed in Tables 3 and 4, respectively, for each of the test problems. By 
considering the minimum mean values computed for the tests A and B, which are obtained for 
the cases Test A-YZ and Test B-XY, and the mean values computed for the Test C, we 
propose to select the values,

2.0,38.0:1 21  mm (53)
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17.0,33.0:75.0 21  mm (54)

13.0,25.0:5.0 21  mm (55)

as the first and the second standard reference wave number, respectively. Both standard 
reference wave numbers decrease as the distortion of the regular mesh increases. 

0 25 50 75 100 125 150

1.0025
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1.0035
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Figure 13: Test C. Maximum of the indicator of spatial dispersion associated to the group velocity for 
dimensionless wave number up to reach the second reference value versus the angle of wave propagation.

 = 0.25   1   3/4   1/2
TEST A

XY S, OYp
S, OZp

0.3723
0.3711

0.3559
0.3558

0.3293
0.3262

XZ S, OYp
S, OZp

0.3723
0.3711

0.4159
0.4171

0.4993
0.4989

YZ S, OYp
S, OZp

0.3723
0.3711

0.3120
0.3127

0.2497
0.2494

TEST B
XY S, OYp

S, OZp
0.3842
0.3875

0.3348
0.3333

0.2544
0.2531

XZ S, OYp
S, OZp

0.3842
0.3875

0.3395
0.3372

0.2630
0.2591

YZ S, OYp
S, OZp

0.3842
0.3875

0.3901
0.3917

0.3514
0.3481

TEST C
S, OYp
S, OZp

0.3914
0.3916

0.3541
0.3507

0.2658
0.2615

Table 3: Mean values of the dimensionless wave number for which the sign of the first derivative of the specific 
higher order corner energy changes from negative to positive.
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The use of one of the standard reference wave numbers as optimum cutoff wave number to 
properly capture an arbitrary interference field composed of both longitudinal and transverse 
harmonic waves is also investigated. To approach this question, the computation of natural 
modes when a solid is discretized by a regular mesh will be analyzed.

 = 0.25   1   3/4   1/2
TEST A

XY S, OYp
S, OZp

0.1939
0.1949

0.1875
0.1883

0.1750
0.1755

XZ S, OYp
S, OZp

0.1939
0.1949

0.2186
0.2199

0.2633
0.2645

YZ S, OYp
S, OZp

0.1939
0.1949

0.1641
0.1648

0.1315
0.1323

TEST B
XY S, OYp

S, OZp
0.1998
0.1998

0.1758
0.1758

0.1341
0.1345

XZ S, OYp
S, OZp

0.1998
0.1998

0.1773
0.1772

0.1385
0.1386

YZ S, OYp
S, OZp

0.1998
0.1998

0.2042
0.2042

0.1866
0.1865

TEST C
S, OYp
S, OZp

0.2025
0.2021

0.1843
0.1838

0.1401
0.1400

Table 4: Mean values of the dimensionless wave number for which the sign of the second derivative of the 
specific higher order corner energy changes from negative to positive.

3 MODAL ANALYSIS
In order to properly capture a natural mode, a discretized solid must properly capture both 

the longitudinal and transverse waves with frequency equal to the associated natural 
frequency. From the inequality TL mm  we deduce that if the solid discretized by a regular 
mesh properly captures the transverse waves also properly captures the longitudinal waves; 
obviously, the inverse is not true.

From Eq. (7) and Eq. (28), given the dimensionless wave number based on the transverse 
wave, we obtain the associated frequency at the continuum, for the solid discretized by a 
regular mesh,

T
T

T m
b

cf
2

 (56)

From Eq. (56) and Eq. (53)-(55) we obtain the first and the second reference frequency. 
Both reference frequencies depend on the aspect ratio parameter.

Two test problems will be analyzed: the clamped block and the cantilever beam [18], 
which are discretized by the regular meshes represented in Figure 14. The clamped block is a 
relatively bulk solid which is discretized by a moderately distorted mesh. The cantilever beam 
is a slender structural element which is discretized by a highly distorted mesh. For the 
clamped block: Young�s modulus, E  68.95 x 109 Pa; Poisson�s ratio,   0.3; mass density 
per unit volume of the material,   2560 kg/m3; aspect ratio parameter,   3/4. For the 
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cantilever beam: Young�s modulus, E  2.068 x 1011 Pa; Poisson�s ratio,   0.3; mass density 
per unit volume of the material,   8058 kg/m3; aspect ratio parameter,   1/2. 

4/3 m

3/8 m

1/2 m
Y

X

Z

3.6 m

0.60 m

0.30 m

Y

X Z

Figure 14: Clamped block and cantilever beam.

The reference frequencies for the clamped block and the cantilever beam are, respectively,

HzfHzf TT 23.4377,98.8496 21  (57)

and

HzfHzf TT 87.272229.5236 21  (58)

An estimation of the error for the natural frequencies and modes obtained with the 
discretized solid is presented. In each case the reference model is obtained by dividing each 
element of the actual mesh into eight elements. The natural frequencies and the modal 
displacements obtained with the actual model and the ones obtained with the reference model
are compared by the frequency error and the correlated coefficient for modal vector [19],
respectively,
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The vectors in Eq. (60) are obtained by computing each modal displacement at the nodes 
of the reference mesh. A value of CCFMV close to 1 suggests that the two vectors are well 
correlated, and a value close to 0 indicates uncorrelated vectors. A poor correlation between 
the results obtained with the actual model and the ones obtained with the reference model is 
indicated by frequency error greater than 5, and by CCFMV less than 0.90 [20].

For the test problems, in Tables 5-8 we present the evolution of Eq. (59) and Eq. (60)
versus the natural frequency computed by the actual model. 

MODE FR (Hz) FE CCFMV MODE FR (Hz) FE CCFMV
SS SA

1 2199.821 0.179 1.000 1 971.640 0.534 1.000
2 2727.118 0.185 1.000 2 1613.714 0.274 1.000
3 3042.302 0.133 1.000 3 2950.334 0.440 1.000
4 4056.529 0.430 1.000 4 3344.607 0.374 1.000
5 5346.486 0.817 0.999 5 3763.871 0.425 1.000
6 5590.840 0.238 1.000 6 4901.894 0.575 1.000
7 6065.390 0.790 0.996 7 5164.174 0.725 1.000
8 6346.069 0.361 0.984 8 5483.621 0.544 0.999
9 6426.352 0.573 0.975 9 5613.046 0.618 0.999

10 6645.206 0.744 0.971 10 5963.634 0.511 0.999
11 6746.201 0.410 0.967 11 6288.133 1.725 0.997
12 6817.067 0.821 0.956 12 6863.180 1.421 0.997
13 7172.877 0.741 0.983 13 7036.543 1.216 0.993
14 7297.092 1.656 0.978 14 7211.806 1.071 0.540
15 7433.359 1.183 0.996 15 7275.739 1.850 0.558
16 7797.719 1.442 0.990 16 7585.119 1.276 0.988
17 8070.746 1.607 0.981 17 7867.853 1.356 0.989
18 8169.500 1.548 0.971 18 8201.079 1.961 0.981
19 8424.037 1.451 0.941 19 8329.689 1.378 0.987
20 8557.213 1.191 0.976 20 8827.818 3.605 0.038
21 8671.875 1.517 0.896 21 8987.235 3.102 0.183
22 8850.724 2.430 0.190 22 9085.131 2.468 0.097
23 8974.079 2.743 0.145 23 9259.918 2.966 0.007
24 9170.113 2.203 0.134 24 9617.571 3.690 0.396
25 9371.654 3.674 0.258 25 9827.690 4.762 0.031
26 9458.243 3.038 0.414 26 10057.981 5.405 0.082
27 9538.228 2.566 0.179 27 10269.557 5.395 0.415
28 9675.288 3.585 0.565 28 10296.553 4.117 0.096
29 9842.971 2.247 0.851 29 10403.791 4.255 0.314
30 9891.466 2.295 0.861 30 10515.302 3.554 0.588

Table 5: Clamped block. Frequency error and correlated coefficient for modal vector versus the computed 
natural frequency. Modes SS and SA.
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For the clamped block is observed that whenever the computed natural frequency is less 
than the second reference frequency the results obtained with the actual model and the ones 
obtained with the reference model exhibit a high correlation. The results in the range between 
the second reference frequency and the first one are generally well correlated; nevertheless, if 
the first reference frequency is gone through the results clearly exhibit a poor correlation. 

For the cantilever beam is observed that whenever the computed natural frequency is less 
than the second reference frequency the results obtained with the actual model and the ones 
obtained with the reference model exhibit a high correlation or, alternatively, a good 
correlation; nevertheless, in the range between the second reference frequency and the first 
one a non-negligible number of modes exhibit a poor correlation. 

MODE FR (Hz) FE CCFMV MODE FR (Hz) FE CCFMV
AS AA

1 1425.965 0.267 1.000 1 1131.355 0.418 1.000
2 2742.309 0.124 1.000 2 2399.369 0.275 1.000
3 3298.543 0.206 1.000 3 3143.737 0.402 1.000
4 4115.889 0.138 1.000 4 4145.977 0.425 1.000
5 4670.003 0.594 1.000 5 4551.929 0.489 1.000
6 5347.425 0.600 0.999 6 5097.987 0.618 0.993
7 6138.249 0.698 0.981 7 5193.445 0.593 0.996
8 6201.578 0.568 0.984 8 5589.388 0.491 1.000
9 6447.421 0.321 0.999 9 6061.990 0.964 0.998

10 6702.224 0.370 0.991 10 6420.540 1.052 0.997
11 6759.073 0.611 0.991 11 6489.071 0.614 0.998
12 6973.841 0.962 0.964 12 6907.589 1.205 0.966
13 7132.266 1.647 0.953 13 7003.408 0.687 0.966
14 7339.887 1.116 0.966 14 7453.756 2.415 0.957
15 7696.521 1.236 0.980 15 7788.464 2.590 0.956
16 7962.018 2.898 0.959 16 7959.445 1.579 0.942
17 8065.381 1.591 0.965 17 8068.548 1.748 0.948
18 8125.485 0.861 0.967 18 8597.211 2.834 0.359
19 8411.192 1.882 0.802 19 8650.454 1.667 0.281
20 8461.104 1.145 0.813 20 8824.951 0.859 0.984
21 8781.663 1.964 0.992 21 9012.522 1.964 0.968
22 8852.156 1.780 0.989 22 9158.781 2.621 0.970
23 9167.227 1.706 0.968 23 9431.149 1.110 0.982
24 9250.645 1.851 0.970 24 9624.671 1.708 0.386
25 9427.560 1.937 0.950 25 9947.605 4.385 0.240
26 9522.444 2.017 0.547 26 10081.541 3.585 0.361
27 9599.327 2.587 0.555 27 10318.279 4.558 0.588
28 9772.311 2.631 0.695 28 10399.856 3.357 0.513
29 9890.698 2.122 0.409 29 10720.404 4.805 0.862
30 10066.772 3.013 0.253 30 10908.133 4.860 0.043

Table 6: Clamped block. Frequency error and correlated coefficient for modal vector versus the computed 
natural frequency. Modes AS and AA.
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4 CONCLUSIONS
This paper studies the propagation of plane harmonic waves in unbounded media 

discretized by the standard twenty-node hexahedral finite element. The element stiffness 
matrix is split into basic and higher order components which are obtained from mean and 
deviatoric strain fields, respectively. This decomposition is applied to the elastic energy. The 
research is focused on the properties of the higher order elastic energy versus the wave 
number. Based on the properties of the higher order energy, two values of the wave number 
are selected as reference values. The noteworthy conclusions of this paper are:

MODE FR (Hz) FE CCFMV MODE FR (Hz) FE CCFMV
SS SA

1 353.417 0.082 1.000 1 37.380 0.218 1.000
2 1057.604 0.087 1.000 2 209.804 0.225 1.000
3 1752.870 0.106 1.000 3 516.261 0.249 1.000
4 2428.493 0.155 1.000 4 881.088 0.312 1.000
5 3058.068 0.256 1.000 5 1279.072 0.443 1.000
6 3569.675 0.425 0.999 6 1693.375 0.662 1.000
7 3701.198 0.336 1.000 7 2114.270 0.978 1.000
8 3899.181 0.686 0.999 8 2514.574 1.216 0.998
9 4129.715 0.984 0.990 9 2740.195 0.360 0.994

10 4166.233 0.160 0.992 10 2866.200 1.003 0.991
11 4175.800 0.136 0.998 11 3120.875 1.247 0.985
12 4264.840 0.214 0.988 12 3263.999 1.205 0.983
13 4286.941 0.456 0.939 13 3595.522 2.209 0.960
14 4385.815 1.182 0.891 14 3713.496 1.487 0.951
15 4405.419 0.414 0.937 15 4103.630 3.509 0.919
16 4624.747 2.380 0.985 16 4191.904 1.596 0.899
17 4837.400 2.416 0.774 17 4634.283 5.162 0.935
18 4955.171 2.304 0.761 18 4668.742 1.214 0.965
19 5259.268 5.054 0.886 19 5130.796 5.919 0.702
20 5371.512 1.860 0.146 20 5303.737 3.959 0.468

Table 7: Cantilever beam. Frequency error and correlated coefficient for modal vector versus the computed 
natural frequency. Modes SS and SA.

 The numerical research reveals that the first reference wave number could be used as an 
optimum cutoff wave number to properly capture an harmonic wave from the wave 
velocity standpoint. For dimensionless wave number less than the second reference wave 
number the harmonic wave would be properly captured also from the velocity of energy 
transport standpoint.

 The strong numerical anisotropy induced by the non-cubic meshes results in broad 
variations of both reference wave numbers versus the direction of wave propagation; 
nevertheless, by considering the mean values, the first and the second standard reference 
wave number can be defined. These ones depend on the aspect ratio parameter. Given the 
standard reference wave numbers based on the transverse wave, the first and the second 
reference frequency are defined.

 The numerical research reveals that a finite element natural mode exhibits a high 
precision or, alternatively, a good precision whenever the natural frequency is less than 
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the second reference frequency; nevertheless, in the range between the second reference 
frequency and the first one, the precision of the natural modes is clearly depending on the 
problem. Generally, it could be regarded that, in the range between the second reference 
frequency and the first one, the finite element model has an intermediate precision.

The consideration of more complex waves and media is subject of research.

MODE FR (Hz) FE CCFMV MODE FR (Hz) FE CCFMV
AS AA

1 19.041 0.239 1.000 1 164.960 0.217 1.000
2 115.702 0.283 1.000 2 496.209 0.230 1.000
3 310.034 0.372 1.000 3 831.344 0.266 1.000
4 574.523 0.532 1.000 4 1172.703 0.344 1.000
5 893.127 0.788 1.000 5 1522.456 0.491 1.000
6 1252.357 1.171 1.000 6 1882.767 0.740 1.000
7 1643.297 1.714 1.000 7 2255.951 1.128 1.000
8 2060.514 2.448 0.999 8 2644.537 1.700 0.999
9 2499.275 3.367 0.998 9 3051.184 2.495 0.998

10 2849.359 1.745 0.870 10 3478.099 3.545 0.997
11 2909.888 1.099 0.717 11 3924.298 4.820 0.992
12 2990.308 2.269 0.699 12 4366.385 5.878 0.950
13 3034.928 0.675 0.929 13 4579.422 2.468 0.976
14 3180.253 0.504 0.992 14 4708.509 0.975 0.755
15 3365.136 2.755 0.514 15 4733.350 0.914 0.616
16 3491.702 3.746 0.506 16 4778.153 1.256 0.558
17 3606.540 0.696 0.989 17 4856.998 1.590 0.508
18 3873.630 4.370 0.204 18 4955.099 2.154 0.423
19 4022.877 4.693 0.198 19 5086.594 2.591 0.320
20 4179.955 1.586 0.927 20 5231.727 3.745 0.118
21 4382.056 5.620 0.878 21 5400.464 4.503 0.062
22 4521.035 2.244 0.979
23 4885.734 6.862 0.175
24 5135.984 8.367 0.155
25 5294.493 6.096 0.253

Table 8: Cantilever beam. Frequency error and correlated coefficient for modal vector versus the computed 
natural frequency. Modes AS and AA.
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