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Abstract. A high-order Absorbing Boundary Condition (ABC) is devised on an artificial
boundary for time-dependent elastic waves in unbounded domains. The configuration consid-
ered is that of a two-dimensional elastic waveguide. The proposed ABC is an extension of the
Hagstrom-Warburton ABC which was originally designed for acoustic waves, and is applied
directly to the displacement field. The order of the ABC determines its accuracy and can be
chosen to be arbitrarily high. A special variational formulation is constructed which incor-
porates the ABC. A standard FE discretization is used in space, and a Newmark-type scheme
is used for time-stepping. A long-time instability is observed, but simple means are shown to
dramatically postpone its onset so as to make it harmless during the simulation time of interest.
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1 INTRODUCTION

A well-known computational technique for treating wave problems in unbounded domains
is the use of Absorbing Boundary Conditions (ABCs), also known by other names such as
Radiating Boundary Conditions and Non-reflecting Boundary Conditions; see the review papers
[1–3]. An ABC is a condition imposed on an artificial boundary which truncates the unbounded
domain, thus allowing the replacement of the original problem by another problem defined in
a finite domain. The latter can then be solved using standard numerical techniques like finite
element (FE) or finite difference schemes. Application areas include acoustics, oceanography,
electromagnetic waves and Solid-Earth Geophysics (SEG).

In 1993, Collino [4] proposed the first genuinely high-order local ABC for the wave equa-
tion, which does not involve high derivatives and can be implemented up to any desired order.
The key here is the use of auxiliary variables, which are introduced on the artificial boundary
and enable the elimination of the high derivatives from the ABC equations. Various authors
followed Collino in proposing different high-order ABCs; see the review in [5]. Here we con-
centrate on the Hagstrom-Warburton [6] high-order ABC.

The use of ABCs in SEG, for the solution of direct or inverse elastic wave problems, goes
back to the seminal 1969 paper of Lysmer and Kuhlemeyer [7], who proposed a dashpot-type
ABC. Despite its crude accuracy, the dashpot ABC is still used today, along with various im-
proved ABCs and absorbing layers which have been proposed in the last four decades; see,
e.g., [8–10].

In contrast to the situation with PML, the only high-order ABC developed for elastic waves
to date, to the best of our knowledge, is that of Tsogka and Joly [11, 12]. Their ABC is an
extension of the Collino ABC [4] to elastodynamics, and is based on using special potential
functions. The ABC was incorporated in a mixed FE formulation. Very recently [13], a long-
time instability has been observed in solutions generated by this scheme. We shall see that the
scheme proposed here suffers from the same malady, although the onset of the instability can
be postponed dramatically by using various means.

In the present paper, we propose another high-order ABC for elastodynamics, which is an
extension of the Hagstrom-Warburton ABC [6]. The latter is, in turn, a high-order form of
the Higdon ABC [14], and a symmetrized modification of the Givoli-Neta high-order formu-
lation [15, 16]. This ABC, developed originally for scalar time-dependent problems and hy-
perbolic conservation systems, has been shown to be extremely effective in a variety of situa-
tions [6, 17–21]. Here we extend the ABC for use in elastodynamics, basing it directly on the
displacement field.

2 PROBLEM STATEMENT

We consider a two-dimensional semi-infinite elastic waveguide of width b, as shown in Fig.
1(a).

In the waveguide we consider the two-dimensional (plane strain) linear equations of elasto-
dynamics. Some boundary conditions are specified on all three boundaries. Initial conditions
are also prescribed. We assume that outside a compact region, denoted Ω0, the following sim-
plified conditions hold: (a) the medium is homogeneous, namely the material properties are
constant; (b) the material is isotropic; (c) body forces are absent; and (d) the initial values
vanish. As a result of these assumptions, in the semi-infinite region outside Ω0 the governing
equations are reduced to the Navier equations.

We now truncate the semi-infinite domain by introducing the artificial boundary ΓE , located

2



Daniel Rabinovich, Dan Givoli, Thomas Hagstrom and Jacobo Bielak

Γ

NΓ

ΓS

x
y

bW

(b) WΓ

NΓ

ΓS

Ω Γ

x
y

b E

x=xE

D

(a)

Figure 1: A semi-infinite waveguide: (a) the original setup, (b) the setup of the problem with truncated domain.

at x = xE , 0 6 y 6 b; see Fig. 1(b). This boundary divides the original semi-infinite domain
into two subdomains: the exterior domain D, and a finite computational domain Ω, which is
bounded by ΓW ,ΓS,ΓN and ΓE . We choose the location of ΓE such that Ω0 is strictly contained
in Ω.

The initial boundary value problem in Ω consists of the elastic equations in Ω, the given
initial conditions, the boundary conditions on ΓW , ΓN and ΓS , and an ABC imposed on ΓE . We
shall consider this ABC in the next sections.

3 THE HIGH-ORDER ABC: GENERAL APPROACH

The general approach devised in [15] and adopted in [6] to construct a high-order ABC
consists of the following four steps (presented here in the context of a scalar problem, for
simplicity):

Step 1. We start with a basic, low-order, ABC, B0u = 0 on ΓE . The only essential requirement
from this ABC is that it be associated with a reflection coefficient smaller than 1.

Step 2. Taking a product of operators Bj , each one of which has the same form as B0, possibly
with different coefficients, we obtain a P th-order ABC,

BPu ≡

(
P∏

j=0

Bj

)
u = 0 .

Its reflection coefficient is the product of the reflection coefficients Rj associated with
each Bj , and hence becomes exponentially small as P is increased.

Step 3. This high-order ABC is not computationally practical because it involves high-order
derivatives. We introduce the auxiliary variables φj which are defined recursively; using
them we eliminate all the high derivatives, and thus obtain a high-order ABC that involves
only low derivatives.

Step 4. The latter high-order ABC is still not computationally practical, since it involves (in
general) normal derivatives of the auxiliary variables φj on the boundary ΓE . These
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derivatives do not allow us to discretize the φj on ΓE alone. We therefore use the wave
equation itself (which we prove to be satisfied by each φj) to eliminate all normal deriva-
tives of all auxiliary variables. This finally results in a practical high-order ABC.

For details on the development of the elastic ABC based on this approach, see [22].

4 THE HIGH-ORDER ABC: FINAL FORM

The final form of the high-order ABC is as follows.
For j = 2, . . . , P :[(
aj−1a

2
j + aja

2
j−1

)
(λ+ 2µ) + (aj−1 + aj) c

2ρ
]
∂ttφ

x
j − (aj−1 + aj) c

2µ∂yyφ
x
j

=
[
aj−1a

2
j(λ+ 2µ)− aj−1c

2ρ
]
∂ttφ

x
j+1 + aj−1ajc(λ+ µ)∂ytφ

y
j+1 + aj−1c

2µ∂yyφ
x
j+1

+
[
aja

2
j−1(λ+ 2µ)− ajc2ρ

]
∂ttφ

x
j−1 − ajaj−1c(λ + µ)∂ytφ

y
j−1 + ajc

2µ∂yyφ
x
j−1, (1)

[(
aj−1a

2
j + aja

2
j−1

)
µ+ (aj−1 + aj) c

2ρ
]
∂ttφ

y
j − (aj−1 + aj) c

2(λ+ 2µ)∂yyφ
y
j

=
[
aj−1a

2
jµ− aj−1c

2ρ
]
∂ttφ

y
j+1 + aj−1ajc(λ+ µ)∂ytφ

x
j+1 + aj−1c

2(λ+ 2µ)∂yyφ
y
j+1

+
[
aja

2
j−1µ− ajc2ρ

]
∂ttφ

y
j−1 − ajaj−1c(λ + µ)∂ytφ

x
j−1 + ajc

2(λ + 2µ)∂yyφ
y
j−1, (2)

For j = 1:[(
a0a

2
1 + 2a1a

2
0

)
(λ+ 2µ) + a0c

2ρ
]
∂ttφ

x
1 − a0a1c(λ+ µ)∂ytφ

y
1 − a0c2µ∂yyφx

1

=
[
a0a

2
1(λ+ 2µ)− a0c2ρ

]
∂ttφ

x
2 + a0a1c(λ+ µ)∂ytφ

y
2 + a0c

2µ∂yyφ
x
2

+
[
2a1a

2
0(λ+ 2µ)− 2a1c

2ρ
]
∂ttφ

x
0 − 2a1a0c(λ + µ)∂ytφ

y
0 + 2a1c

2µ∂yyφ
x
0 , (3)

[(
a0a

2
1 + 2a1a

2
0

)
µ+ a0c

2ρ
]
∂ttφ

y
1 − a0a1c(λ+ µ)∂ytφ

x
1 − a0c2(λ+ 2µ)∂yyφ

y
1

=
[
a0a

2
1µ− a0c2ρ

]
∂ttφ

y
2 + a0a1c(λ+ µ)∂ytφ

x
2 + a0c

2(λ+ 2µ)∂yyφ
y
2

+
[
2a1a

2
0µ− 2a1c

2ρ
]
∂ttφ

y
0 − 2a1a0c(λ + µ)∂ytφ

x
0 + 2a1c

2(λ + 2µ)∂yyφ
y
0, (4)

These equations are accompanied by (6) and (9) which correspond to j = 0; namely, they
connect ui and φi

1:

(a0∂t + c∂x)ux = a0∂tφ
x
1 , (a0∂t + c∂x)uy = a0∂tφ

y
1 . (5)

In addition we have the ‘closure’ conditions

(a0∂t + c∂x)ux = a0∂tφ
x
1 , (6)

(aj∂t + c∂x)φx
j = (aj∂t − c∂x)φx

j+1, j = 1, . . . , P, (7)

φx
P+1 = 0 on ΓE, (8)

(a0∂t + c∂x)uy = a0∂tφ
y
1, (9)

(aj∂t + c∂x)φy
j = (aj∂t − c∂x)φy

j+1, j = 1, . . . , P, (10)

φy
P+1 = 0 on ΓE , (11)

as well as
φx
0 = ux, , φy

0 = uy . (12)

Eqs. (1)–(12) constitute together the desired ABC on ΓE .
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5 NUMERICAL EXAMPLE

We take zero initial conditions, and we ‘drive’ the problem through a persistent surface force
applied on the north boundary ΓN . On this boundary we take uy = 0 and the nonzero tangential
traction Tx = σxy = TN

x , where

TN
x (x, t) =

{
1 for 0 6 x 6 8

0 for x > 8
, t > 0 . (13)

Snapshots of the reference solution (obtained in a long domain) and the truncated-domain solu-
tion using the ABC with P = 20 are shown in Fig. 2. Steady state is rapidly reached due to the
persistence of the applied force. In later times the solution does not change significantly, and
hence no snapshots are shown after t = 3. It is apparent that the agreement between the two
solutions is excellent.

6 LONG-TIME INSTABILITY

Numerical experiments show that our scheme exhibits a long-time instability, which causes
the solution to grow exponentially after a sufficiently long amount of time. A similar phe-
nomenon was observed with the potential-based high-order ABC of Tsogka and Joly [11, 12].
The origin of this instability is not clear yet. Nevertheless, we have found that the onset of
the instability can be dramatically postponed by injecting small numerical damping into the
time-stepping scheme on the boundary ΓE . See [22] for more details.
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Figure 2: Surface loading problem: snapshots of solution. (a) ux at t = 0.5; (b) uy at t = 0.5; (c) ux at t = 2; (d)
uy at t = 2; (e) ux at t = 3, (f) uy at t = 3.
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[20] E. Bećache, D. Givoli and T. Hagstrom, “High Order Absorbing Boundary Conditions for
Anisotropic and Convective Wave Equations,” J. Comput. Phys., 229, 1099–1129, 2010.

[21] A. Mar-Or and D. Givoli, “High Order Global-Regional Model Interaction: Extension of
Carpenter’s Scheme,” Int. J. Numer. Meth. Engng., 77, 50–74, 2009.

[22] D. Rabinovich, D. Givoli, J. Bielak and T. Hagstrom, “A Finite Element Scheme with a
High Order Absorbing Boundary Condition for Elastodynamics,” submitted.

7


	INTRODUCTION
	PROBLEM STATEMENT
	THE HIGH-ORDER ABC: GENERAL APPROACH
	THE HIGH-ORDER ABC: FINAL FORM
	NUMERICAL EXAMPLE
	LONG-TIME INSTABILITY

