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Abstract. Analyzing damage seismic in large and complex structures is one of the most
challenging problems in steel moment-resisting frame with end-plate bolted connections. The
existence of structural damage in an engineering structure leads to the modification of vibration
modes and global eigenvalues are usually sensitive to the degree of local damage seismic in
bolted connections.

In this analytical study, a nonlinear time history analysis which takes into account nonlinear
modes and frequencies was adopted. According to this approach, the nonlinear modes and fre-
quencies can be determined by an iterative procedure which based on the method of equivalent
linearization.

However, the damage analysis of seismic response requires the introduction of efficient struc-
tural models capable of describing actual behaviour and the application of an adequate algo-
rithm. The paper presents a Fatigue Damage-Based Hysteretic FDBH model to evaluate the
seismic performance of steel moment-resisting frames. The FDBH model is an evolutionary-
degrading hysteretic model based on the low-cycle fatigue LCF damage index. Hence an algo-
rithm was developed to characterize nonlinear behaviour in structures for the purpose of either
damage identification of these structures.
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1 INTRODUCTION

Steel moment-resisting frame structures often are used as part of the seismic force-resisting
systems in buildings designed to resist earthquakes with substantial inelastic energy dissipation.
End-plate bolted connections are one of the safest and most economical options for structural
steel erection. It is therefore desirable to maintain the use and economy of bolted connections
as an option for seismically loaded structures [3].

Beam-column connections in steel moment frames are proportioned and detailed to resist
flexural, axial, and shearing actions that result as a building sways through multiple inelastic
displacement cycles during strong earthquake ground shaking. However, such inelastic action
causes fatigue damage and if long enough the cumulative effect may exhaust the ductile capacity
leading to fracture [4].

However, analyzing damage seismic in large and complex structures is one of the most chal-
lenging problems in steel frames with end-plate connections. Many experimental approaches
confirm the presence of changes in modal parameters such as natural frequencies, mode shapes
because of the damaged elements of the structure [25]. The concept of nonlinear modes was
introduced for the first time by Rosenberg in 1960 [24] and has aparticular interest in the study
of forced responses because there are close links between the properties of the modes (shape,
number) and topology forced response curves of dynamical system. In general, to access the
exact solutions of nonlinear system, complex nonlinear differential equations must be solved.
The nonlinear systems do not generally have access to their exact solutions in the form. Then
approached methods can be used such as Ritz-Galerkin method in which the nonlinear response
of the system in the physical basis is approximated by a linear combination of the normal modes
and the response of the system in modal coordinates [6].

Stupnicka [26] was assumed that the nonlinear normal coordinates are associated with non-
linear normal modes. Following, the principle of nonlinearmodes is used by many researchers
to analyze nonlinear systems with multiple degrees of freedom [25, 21]. Dynamic analysis by
finite element FE is one means of estimating the changes in themodal parameters such as natu-
ral frequencies, mode shapes and modal damping. Global eigenvalues and nonlinear modes can
be determined by an iterative procedure [25].

In this paper, a nonlinear time history analysis which considers the nonlinear modes and
frequencies was adopted. According to this approach, the nonlinear modes and frequencies can
be determined by an iterative procedure which based on the method of equivalent linearization
[25].

Moreover, the damage analysis of seismic response requiresthe introduction of efficient
structural models capable of describing actual behavior. The paper presents a Fatigue Damage-
Based Hysteretic FDBH model to evaluate the seismic performance of steel moment-resisting
frames. The FDBH model is a degrading model based on two damageindices. The plastic
damage index (the first index) in this model is combined with alow-cycle fatigue LCF damage
index (the second index). The model can be able to calculate the fatigue-accumulated damages
of structures. Hence, an algorithm was developed to evaluate the nonlinear seismic behavior of
steel moment frames. Finally, a two-story steel frame will be used as an example to illustrate
the proposed technique.

2 STRUCTURAL DAMAGE OF STEEL MOMENT FRAMES

The problem of damage in steel moment frames, particularly due to seismic excitation is still
a challenge for engineer and researchers to investigate [16]. To understand the damage in the
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bolted connection, the researchers distinguish between two phenomena of damage.
The first one is the damage due to the phenomena of elasto-plasticity behaviour of the bolted

connection under repeated seismic efforts. The earthquakeforces cause inelastic deformations
in the components of bolted connection [22]. The accumulation of plastic strains is one phe-
nomenon of cyclic plasticity. Inelastic deformation in theend plate, in the bolts and in flanges of
beams and columns can change the mechanical properties of bolted connection like the strength
and the stiffness [27].

The nonlinear behaviour is mainly resulted from gradual yielding of connection and can
lead to hysteretic loops at a connection under repeated loading [17]. This important feature of
nonlinear connections in ductile steel frames has the capability of dissipating excitation energy
by an amount equal to the enclosed loop area to stabilize the response under cyclic loading.

To describe the nonlinear behaviour of semi-rigid connection like the end-plate connection,
the relationship between the moment and the relative rotation angle is used. Richard and Abbott
[14] propose to represent the moment-rotation relationship by four parameters. The Richard-
Abbott model represents only the monotonically increasingloading portion of theM−θ curves.
However, the unloading and reloading behaviour of theM − θ curves is also essential for
nonlinear seismic analysis. The subject was extensively addressed in the literature ([9]) where
the unloading and reloading parts of theM − θ curves are theoretically developed using the
Masing rule (see Fig.1). The unloading and reloading behaviour of an end-plate connection
based on the Richard-Abbott model is described as:

M = Ma −
(R0 −Rp).(θa − θ)

(

1 +
∣

∣

∣

(R0−Rp).(θa−θ)
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whereM is the connection moment,θ is the relative rotation between the connecting elements,
R0 is the initial stiffness,Rp is the plastic stiffness,M0 is the reference moment, andγ is the
curve shape parameter.(Ma, θa) is the load reversal point as shown in Fig.1.
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Figure 1: Nonlinear hysteretic model of end-plate connection.
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The second phenomena of damage is the damage caused by low cycle fatigue. This type of
fatigue causes progressive and cumulative damage in the stiffness of the bolted connection [5,
15]. Because of the stress concentration, cracks may appear in the welds which is characterised
by the different stages of micro and macro crack propagationand final fracture [23]. Moreover,
Bolts can loosen over time because micro-macro slip in the bolt-nut and the assembled plates
[18]

Many mathematical relations have been proposed, particularly Manson-Coffin relation which
describes linearly this function between the applied rotation and the number of cycles to rupture
on a double-logarithmic scale [10, 11]. The information provided by the Rotation-Number of
cycles curve is mainly used by engineers for the prediction of the lifetime and resistance of
structures under repeated loading.

To evaluate damage more precisely, Miner’s rule [11] is commonly used. According to this
rule, applying a cyclenx times with a stress amplitude which corresponds to a lifetime ofNx

cycles is equivalent to consuming a portionnx/Nfx of the whole lifetime. This rule implies that
rupture occurs when 100% of the lifetime is consumed. It describes also the phenomenaof the
cumulative linearity of fatigue damage if another application stress is employed. Though many
models of damage have been proposed , Miner’s rule is still widely used in the engineering field
[15].

The fatigue problem occurs in the weaker parts of a structureand in the case of steel frames,
as used in civil engineering, fatigue damage generally occurs at its connections. This indicates
the importance of studying the resistance and fatigue damage of the beam-column connection
in portal frame structures. Experimental tests for predicting the resistance of the beam-column
connection have been published [19, 27] with the aim of identifying the key parameters of
resistance of the beam-column connection. Some numerical studies have also been carried out
using the finite element method to observe the behaviour of the fracture mechanism [20, 22].

The damage phenomena of elasto-plasticity behaviour and LCFdue to cyclic loading may
occur simultaneously. There is a strong interaction and a separation of the damage processes is
impossible. Furthermore, each phenomenon alone is characterised by different aspects.

3 FBDH MODEL OF END-PLATE CONNECTION

In this study, The Richard-Abbott model has been modified to include degrading in the
stiffness of the connection produced by the cumulative phenomenon of LCF. An evolutionary-
degrading hysteretic model can be developed based on the LCF damage indexDn. In Richard-
Abbott model, the cycle inM − θ curve begins with a secant stiffnessR0 and it changes in
nonlinear way toRp. But the connection loses part of its life in each cycle of excitation ap-
plied because of the cumulative phenomenon of LCF. For this reason the secant stiffness of the
connection must be changed at the end of each cycle using an index of fatigue damageDn to
take into consideration the past lost life of the connection. The initial stiffness can be modified
with the factor(1−Dn) that takes into account the effect of cumulative fatigue (see Fig.2). The
following equations present the developed model for the moment-rotation relationship and the
secant stiffness:
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whereM∗ is the degraded connection moment andR∗ is the degraded secant stiffness.

Moment

RotationR0.(1-Dn)
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(   b,Mb)

M0

Rp
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R0.(1-Dn)

(   , M)

Figure 2: Fatigue Damage-Based Hysteretic model of end-plate connection.

It should be noted that the secant stiffness in Eq.(4) is modified and also with this idea, it is
possible to combine the two indices by the equation:

Dp = 1−
R∗

R0

(5)

whereR0 is the initial stiffness of the connection of connection andR∗ is the tangent stiffness
of the connection which depends on the indexDn.

To calculate the LCF damage indexDn, an analogous models based on the plastic connection
rotation are used therein. A useful means of describing the LCF is expressed by Mander et al.
[10] for a bolted connection. Thus using the well known Manson-Coffin relationship [7], the
plastic rotation may be related to the number of cyclesNf by the following equation:

Nf = c.(∆θ)−b (6)

where∆θ is the range of variation of rotation andc, b are parametres which depend on both
the typology and the mechanical properties of the considered steel element. The parametres of
Manson-Coffin relationship adopted in this study are (c = 2.10−4) and (b = 3) [10].

Moreover, cumulative damage models should be used to assessdeterioration and failure
in structural components under arbitrary loading histories. Miner’s rule is still the most used
cumulative damage rule for its simplicity and efficiency in LCF region [11]. In the case of
connection subjected to many cycles of rotation, Miner’s rule is expressed by the following
equation:

Dn =
X
∑

x=1

nx

Nfx

(7)

whereDn is the LCF damage index,nx is the numbre of applied cycles for a given rotation
levelx andNfx (see Eq.6) is the number of cycles to failure for roation level x according to the
rotation-cycle curve given by Mander et al [10]. The rule is usually employed with the rainflow
algorithm since it seems the best counting method [13].

The purpose of such model for the end-plate connection is to simulate inelastic response of
structure under dynamic loading by combined damage indices.
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4 NONLINEAR MODES AND FINITE ELEMENT

If a structure is properly modeled using finite element, structural damage manifests itself
mathematically in the stiffness and mass matrices, and physically in its dynamic properties such
as natural frequencies and mode shapes. Finite element methods (FEM) have become a standard
technique for structural analyses for more than three decades. In this study, the damage in the
structure is identified as a change in stiffness of the finite elements in the different beams of the
FE model. The FE model of the structure is a two-dimensional model (see Fig.3) developed
using the FE structural analysis program Structural Dynamics Toolbox (SDT) [28].

Consider a structure which is composed of a foundationr and a subsetl of free-to-vibrate
degree-of-freedom, shown in Fig.3.Ω is the interface betweenr andl. The equation of motion
for a damped structure with N degrees-of-freedom (dof) is given as follows:

Mq̈ + C̄q̇ + K̄q = F (t) (8)

whereM , C̄, K̄ are respectively the mass, nonlinear damping and nonlinearstiffness matrix of
the structure andF (t) is the applied forces.

In this study, we adopt the hypothesis that the stiffness matrix of system is nonlinear and
depends on the response of system and the nonlinear normal modes. In the case of seismic
excitation applied to the foundationr, the only dynamic force of structure is the inertia force
produced by basic movement. Consider the foundation of structure as immensely rigid. There-
fore, the movement of the foundationr is defined as the rigid body displacements of structure.

The response of system in normal coordinate is defined as:

q(t) =

{

ql
qr

}

(9)

whereql is the response of subsetl andqr is the response of foundationr.
The corresponding partitions of the mass, stifness matrix and the vector of external force are:

M =

[

Mll Mlr

Mrl Mrr

]

, K̄(q) =

[

K̄ll K̄lr

K̄rl K̄rr

]

, F (t) =

{

Fl = 0
Fr

}

(10)

whereFr is the vector of reaction forces at the foundationr.

rq (t)  

(j)
Beam element (j) with end-plate 

connections

W

l

r

q

q

Figure 3: MDOF system

Rayleigh damping is used to represent damping in the structure. It can be written as:

C̄ = α.M + β.K̄ (11)
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whereα andβ are the proportional constants.
According S. Setio [25], eigenvalues and eigenvectors for anonlinear system cannot be

obtained by solving the standard eigenvalue problem. As thesolution of a nonlinear system
depends heavily on the amplitude of motion, the frequenciesand normal modes depend on the
nonlinear modal amplitude. The introduction of the notion of nonlinear modes permits an exten-
sion of the method of linear modal synthesis to nonlinear cases in order to obtain the dynamical
response of nonlinear multi-degree-of freedom systems.

The nonlinear normal modes and nonlinear frequencies must be calculated by an iterative
procedure. In this paper, we adopted a procedure which is based on the method of equivalent
linearization. For each time step of calculation, the stiffness and damping matrices of the system
will be obtained which transform the nonlinear system into an equivalent linear system. The
frequencies and nonlinear normal modes can then be calculated using a standard solution to the
eigenvalues. A set of N nonlinear modes and frequencies are obtained according to their modal
amplitudes.

Considering the FEM characteristic equation for the structure in Fig.3, the nonlinear modal
problem can be written as following:

[K̄(ηp, ϕ̄p(ηp))− ω̄2
p(ηp)M ]ϕ̄p(ηp) = 0 (12)

Whereηp, ω̄p(ηp), ϕ̄p(ηp) are respectively the fixed structure response in modal coordinate, the
nonlinear frequencies and the nonlinear normal modes.

S. Setio [25] assumes that the normal coordinates nonlinearare associated with nonlinear
normal modes. In this case, the orthogonality property of eigenvectors used to treat the linear
problem can be extended to nonlinear problems. This option allows to transform a system of
N coupled equations of a system with N degrees of freedom in the physical basis of a set of N
decoupled equations in the modal basis.

In the case of excitation at the base, the movement of the structure is the superposition of a
movement training of rigid body and a movement relative to the base that can be expressed by
the modes of structure fixed at the foundationr. Finally, the response of nonlinear system in
normal coordinate can be obtained efficiently by superposition of modal response as follows:

q(t) = Φrqr + ϕ̄p(ηp)ηp (13)

whereΦr is rigid body modes matrix defined by ther dof of the foundation.
The mode shapes matrix of a nonlinear structure fixed at the foundation is expressed as

following:

ϕ̄p =

[

ϕ̄lp

0

]

=

[

x̄
(1)
l x̄

(2)
l . . . x̄

(p)
l

0 0 . . . 0

]

(14)

After substituting the transformation of Eq.(13) in the equation of motion (see Eq.(8)), we
obtain the following system (given the properties of rigid modesK̄Φr = 0, C̄Φr = 0):

[

Φt
rMΦr Φt

rMϕp

ϕ̄t
pMΦr ϕ̄t

pMϕ̄p

] [

q̈r
η̈p

]

+

[

0 0
0 ϕ̄t

pC̄ϕ̄p

] [

q̇r
η̇p

]

+

[

0 0
0 ϕ̄t

pK̄ϕ̄p

] [

qr
ηp

]

=

{

Fr

0

}

(15)
And also we can write:

[

mrr Lt
pr

Lpr [mp]

] [

q̈r
η̈p

]

+

[

0 0
0 [c̄p]

] [

q̇r
η̇p

]

+

[

0 0
0 [k̄p]

] [

qr
ηp

]

=

{

Fr

0

}

(16)
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where:
mrr = Φt

rMΦr is the rigid body mass matix.
L̄pr = ϕ̄t

pMΦr is modal participation factors matrix.
[m̄p] = ϕ̄t

pMϕ̄p is the generalized mass matrix.
[c̄p] = ϕ̄t

pC̄ϕ̄p is the generalized damping matrix.
[k̄p] = ϕ̄t

pK̄(ηp, ϕ̄p(ηp))ϕ̄p is the generalized stiffness matrix.

Eq.(16) can be expressed as the following developed form:

[m̄p]η̈p + [c̄p]η̇p + [k̄p]ηp = −L̄prq̈r (17)

Fr = mrrq̈r + L̄t
prη̈p (18)

Modals movement equations of the excited structure are given by Eq.(17) whereηp is the
fixed structure response in modal coordinates. The system issubjected to modal inertia forces
f̄p = −L̄pr.q̈r. The equation of movement for modei has the following form:

m̄iη̈i + c̄iη̇i + k̄iηi = −L̄irq̈r (19)

wherem̄i, c̄i, k̄i, are respectively the modal mass, nonlinear modal damping and nonlinear
modal stiffness and they can be calculated by the following equations:

m̄i = x̄(i)tMx̄(i) (20)

c̄i = x̄(i)tC̄x̄(i)

k̄i = x̄(i)tK̄(ηp, ϕ̄p(ηp))x̄
(i)

In Eq.(19),L̄ir = x̄(i)tMΦr is theith row of the matrixL̄pr and−L̄ir.q̈r = f̄i(t) is gener-
alized force of theith mode. After solving the modal equations of motion (see Eq.(17)), the
reactions at the base and the displacement of the system can be calculated.

To calculate the response of dynamical system, such as the system given by Eq.(19), which
subjected to arbitrary seismic loads, temporal integration methods are considered the only meth-
ods applicable to nonlinear systems with many degrees of freedom. In this study, the Runge-
Kutta method is adopted for the numerical solution of differential equations.

The incremental equilibrium equation of the dynamic systemduring the time∆tn can be
writhed as following:

m̄i.∆η̈i + c̄n,i.∆η̇i + k̄n,i.∆ηi = ∆f̄i(t) (21)

wherec̄(n,i), k̄(n,i) are the tangent properties defined at the timetn.
In general,η(n,i), η̇(n,i), η̈(n,i) at timetn is known and Range-Kutta algorithm can be used to

calculateη(n+1,i), η̇(n+1,i), η̈(n+1,i) at timetn+1. Once the modal displacements are obtained, the
relative response of system in normal coordinates at the time tn+1 can be calculated by Eq.(13)
as follows:

qn+1 =
N
∑

i

x̄(i).ηn+1,i (22)

The stiffness matrix of system should be recalculated taking consideration nonlinear be-
haviour of connections. For this reason, the calculated displacements are used to calculate the
internal forces of elements. From Eq.(22), the rotations ofbolted connections are known and
using the hysteretic model represented by Eqs.(1), (2) and (5), the connection momentMj(n+1),
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the tangent stiffnessRj(n+1), the LCF damage indexDnj(n+1)
and the plastic damage index

Dpj(n+1)
of each bolted connection of the beam element(j) will be calculated at the timetn+1.

A correction matrixCr proposed by Monfortoon and Wu ([12, 8]) is adopted and it is used
to modify each matrix beam of the system at the timetn+1. It can take account of the flexibility
of semi-rigid connections. The correction matrixCr for the element(j) at the timetn+1 is
presented as follows:

Crj(n+1) =
∑

q

∑

s

cqsj(n+1)
with cqsj(n+1)

= f(Dpj,l(n+1)
, Dpj,r(n+1)

, Lb) (23)

whereDpj,l(n+1)
, Dpj,r(n+1)

are the plastic damage indices of the connections (leftl and rightr,

respectively) for the element(j) at the timetn+1. Lb is the length of the beam element(j). The
values ofcqs are represented by R. Hasan et al. [8] for a beam element with bolted connection
at its ends.

The nonlinear matrix for the beam element(j) at the timetn+1 can be calculated using the
correction matrix with the following equation:

k̄j(n+1)
= kj .Crj(n+1)

(24)

wherekj the standard elastic stiffness matrix for the beam element(j) [8].
The matrixK̄ can be assembled by the stiffness matrices of each beam and column element

in the system with the following equation:

K̄(n+1) =
ne
∑

e=1

k̄e(n+1)
(25)

wherene is the total number of elements in the MDOF system and membersare generically
identified by indexe.

Because we do not have nonlinear behavior in the columns, the stiffness matrix of each
column element̄ke is equal to the standard elastic stiffness matrix for the column elementke.

5 ALGORITHM OF ANALYSIS

An algorithm was developed to evaluate the seismic performance of steel moment resisting
frames with end-plate connections (see Fig.4). Using this algorithm, the influence of the LCF
damage on the behaviour of end-plate connection is studied.To evaluate the accumulation of
LCF damage, two phases of analysis have been conducted in thisalgorithm.

Nonlinear dynamic analysis of 

MDOF system

( hysteretic model)

Response of bolted connections

( Rotation-Time histogram)

Nonlinear dynamic analysis of 

MDOF system

( Fatigue damage-based 

hysteretic model )

Rainflow program:

Counting cycles

Figure 4: Flowcharte of the proposed algorithm
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The objective of the first one is to prepare a nonlinear modal analysis of the structure using
the hysteretic model. This phase is important to prepare thenecessary data for the second phase.
In this phase, the rotation-time histograms will be obtained. These histograms are necessary to
prepare an analysis of LCF damage.

In the second phase, a cycle counting program (rainflow program) will be used through the
Matlab toolbox offered by A. Nieslony [13]. This program analyzes the histograms to find the
number of cycles counted, the corresponding rotational levels and the corresponding times. A
FDBH model will be used, following in the second phase, to prepare a nonlinear modal analysis
of the structure and to combine the damage caused by elasto-plastic behaviour and LCF.

In both phases, a modal analysis based on finite element code of SDT Toolbox is performed
to find the dynamic response of the steel frame subjected to seismic excitation.

6 NUMERICAL EXAMPLE

In order to illustrate the application of the proposed method, a two-story steel frame is pre-
sented. The frame has end-plate bolted connections and fixedsupports. The geometric, sec-
tional properties and other pertinent information of the frames are given in Fig.5.
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Figure 5: Two-story steel frame structure.
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Figure 6: Parameters of the end-plate connection (in
mm).

The cross sections are selected from the European section profiles. The important properties
of steel used in this study are summarized in Table 1. The end-plate connection was designed
for the required strength using yield-line theory.

Modulus of elasticity Yield stress Material density
E (GPa) fy (MPa) ρ (kg/m3)

210 280 7850

Table 1: Properties of steel materials.

The connection parameters are represented in Fig.6 and theyare set by the code EC3 to
ensure a good ductile behaviour of the connection. The structure is subjected to gravity loads
of the dead load plus a 10 (KN/m) live load, according to Fig.5, followed by an earthquake with
a peak ground acceleration ofq̈=0.1 g, 0.2 g and 0.36 g. An earthquake record (normalized El
Centro) is used as ground motion input. A damping ratio ofξ= 0.05 is considered throughout.

The nonlinear behaviour and design limit states of the elements were modelled in accordance
with the models presented above and the calculations were carried out by the code SDT Toolbox
on Matlab 7.6 (R2008a).

The moment capacity of a connection depends on the strength of the individual connection
elements. Various investigations have shown that the connection will begin to lose its ability to
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Initial stiffness Maximum moment Yielding moment
R0 (KN.m/rad) Mu (MPa) My (MPa)

1.528× 104 23.86 15.91

Table 2: Mechanical properties of the end-plate connection.

sustain further loading when one or more of the following failure modes occur: bolt failure (in
tension), end plat plastic mechanism, beam and column flanges buckling. The lowest values of
the moment corresponding to these failure modes will present the ultimate connection moment
Mu. The equations used to evaluateMu were adopted from EC3. The yielding moment of the
connection can be evaluated asMy = 2/3Mu.

Initial rotational stiffness of a connection is important and essential for the analysis semi-
rigid frames. The rotational stiffness is directly relatedto the stiffness of each element in the
connection. To evaluate the initial stiffness, the equations of EC3 are used. Based on the
parameters of the connection (see Fig.6), the mechanical properties of the connection can be
calculated (see Table 2). The plastic stiffnessRp is considered to be0.
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Figure 7: Low-cycle fatigue damage index of the
connections (1), (2) for̈q=0.2 g considering the lin-
ear modes.
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Figure 8: Low-cycle fatigue damage index of the
connections (1), (2) for̈q=0.2 g considering the non-
linear modes.

Two types of failure criteria are considered. The first one isthe rotation of the connection
and it must not exceed the maximum value given by the EC3 code. The maximum rotation of
the connection in this study isθmax = 0.025dc/db, according to the EC3. The second is the
indexDn and it must not exceed the value of (1). If both criteria are not met, the connection
will consider as a hinge. The indexDp can take value (1) but must not exceed it. In the other
hand, the rigidityR0 will be 0.

The LCF damage index of the connections (1), (2) forq̈=0.2 g is traced with considering
and non-considering the nonlinear modes (see Figs.7 and 8).The cumulative indexDn reaches
a value of11% in the case of linear modes and it increases to a value of32% in the case of
nonlinear modes because of the modes and frequencies changes (see Figs.9).

To show the influence of the nonlinear mode in the behavior of the frame, the natural fre-
quency of the structure as a function of time for the modei = 1 is traced in Figs.9. The results
are plotted for three levels of seismic excitation (q̈ = 0.1 g, 0.2 g and0.36 g). In the case
q̈ = 0.1 g, we note that the frequency remains constant over time (seeFig.9-a). This is because
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Figure 9: Natural frequency of the structure as a function oftime for the modei = 1 and for three cases: (a)
q̈ = 0.1 g, (b) q̈ = 0.2 g and (c)q̈ = 0.36 g.

the applied excitation is not very strong and it does not generate damage in modes. For the case
q̈ = 0.2 g, we can notice that two kinds of changes in the frequency of the frame (see Fig.9-b).
The first is a drop in the value of frequency because the boltedconnections in the frame are
subjected to significant damage due to fatigue damage. The second is a cyclical change due to
cyclic elasto-plastic behaviour of bolted connection intothe frame.

The cyclical changes are less visible in the case of seismic excitation q̈ = 0.36 g (see Fig.9-
c). Because bolted connections (1), (2) are completely damaged and rotations reach the limit of
ruin. It can also be seen that a greater drop in frequency is happened in this case.

It can be seen from Figs.9 that the analysis with nonlinear mode causes more damages in
the system responses that were not taken into considerationbefore with the linear mode (see
Figs.11 and 10).

7 CONCLUSIONS

This paper uses recent concepts in the structural damage evaluation to analyze structures
under earthquake. An algorithm to study the influence of the LCF damage on the behavior of
end-plate connection is used in this article and a FDBH model is adopted.

The results of this study confirm the presence of changes in modal parameters such as natural
frequencies, mode shapes because of the damaged elements ofthe structure. Further, a drop in
frequency due to the development of plastic hinges during the seismic excitation is observed in
the proposed steel frame example.
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Figure 10: Rotation responses of the connections (1),
(2) for q̈=0.2 g considering the nonlinear modes.
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Figure 11: Rotation responses of the connections (1),
(2) for q̈=0.36 g considering the nonlinear modes.

Moreover, the paper presents a contribution to the solutionof nonlinear steel frame structures
subjected to seismic excitation by the method of nonlinear modal synthesis. The introduction of
the concept of nonlinear mode leads to the possibility of extending the most procedures of the
method of linear modal synthesis to nonlinear cases, which involves considerable simplification
in the context of the analysis of nonlinear steel frame structures.
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