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Abstract. We present an implicit-explicit multi-time-step method for structural dynamics using
the family of Generalized-α methods. With the proposed partitioned method, one can divide a
complex structural domain into several subdomains and solve the individual subdomains sep-
arately. The solution of the original global problem is retrieved by enforcing the prescribed
velocity continuity at subdomain interfaces like the method of Gravouil and Combescure (GC
method). For large-scale simulations, e.g., to solve a global-local Finite Element model with a
coarse global model of the whole structure and several refined local models of parts of the
structure, the proposed scheme can be effective. In order to implement the Generalized-α
method to the multi-time-step integration, first we derive a new predictor-corrector form of
the implicit Generalized-α method from the implicit method previously introduced by Arnold
and Br̈uls. Secondly, we propose a new predictor-corrector form of the explicit Generalized-α
method. Both the implicit method and the explicit method are the one-step four-stage vari-
ants of the Generalized-α methods. Finally, we built our partitioned scheme with the extended
Generalized-α methods. The multi-time-step method is obtained based on the Prakash and
Hjelmstad’s method (PH method). We study the convergence of the current multi-time-step
method by examining a single degree of freedom model problem. It is found that the current
multi-time-step method maintains second-order accuracy, both with a unique time scale and
with different time scales in each subdomain. Moreover, the current multi-time-step method is
not dissipative at subdomain interfaces. Its numerical dissipation is solely introduced by the
Generalized-α methods in each subdomain.
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1 INTRODUCTION

In transient structural dynamics, partitioned time integration schemes are appealing for sim-
ulation of complex engineering systems with large-scale Finite Element (FE) models [8, 7]. By
dividing a structural domain into several subdomains, partitioned time integration methods use
different time steps and/or different integration methodsto different subdomains, according to
their individual physical and computational considerations [12, 4, 9, 10, 11]. For example, a
steel railway bridge can be modelled with a coarse model of the whole structure including sev-
eral refined models of the fatigue-critical connections [17, 16]. Classical monolithic algorithms
use a uniform time step for all elements. Refined local modelsask for a relatively small time
step because of numerical accuracy and/or stability requirements. It creates a heavy computa-
tional task for the global simulation. On the contrary, partitioned integration schemes use a big
time step for the global model and a small time step for the refined local models. As a result,
the computational cost of the global problem is reduced while the accuracy of the solution for
the refined local models is maintained [20].

Fatigue assessment of existing steel railway bridges becomes more and more important in
Europe and North America, because of the aging of the structures [21, 18]. For fatigue life
estimation, one needs to calculate the bridge responses under and after the train passages by
transient analysis. For calibration of the Finite Element model, operational modal analysis is
often performed [13]. To improve the computational efficiency and accuracy for the transient
analysis, the competitive advantages of the multi-time-step methods over the monolithic meth-
ods are exploited.

Among the monolithic methods, the Generalized-α method is well known by its optimal nu-
merical dissipation for both linear and non-linear dynamicproblems [3, 15, 6]. In this paper,
we extend the Generalized-α method to implicit-explicit integration with different time steps in
different subdomains. The proposed partitioned scheme is built on the method previously intro-
duced by Prakash and Hjelmstad (PH method) [20]. The PH method enables implicit/explicit
Newmark methods to be coupled with different time steps in each subdomain. Their method is
energy preserving and unconditionally stable as long as thestability requirement of individual
subdomains is satisfied. Moreover, the PH method solves the subdomain interface problem only
at each coarse time step instead of at each small time step. Therefore, it is computationally more
efficient in comparison to other methods [19].

The paper is organized as follows. In Section 2, we give the formulas of the extended
Generalized-α methods. In Section 3, we study the properties of the proposed monolithic meth-
ods. In Section 4, we build the multi-time-step method with the extended Generalized-α meth-
ods and examine its properties by a numerical test in Section5. In Section 6, the conclusions
are presented.

2 EXTENSIONS OF THE GENERALIZED-α METHOD

We consider here the implicit Generalized-α method as introduced by Arnold and Brüls[1].
The predictor-corrector form of their method can be writtenas:
Equilibrium equation:

Mün+1 +Cu̇n+1 +Kun+1 = Fn+1 (1)
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Predictors:

ũn+1 = un +∆tu̇n +∆t2(
1

2
−

β

1− αm

)an +∆t2β
αf

1− αm

ün (2)

˜̇un+1 = u̇n +∆t(1−
γ

1− αm

)an +∆tγ
αf

1− αm

ün (3)

Correctors:

un+1 = ũn+1 +∆t2β
1− αf

1− αm

ün+1 (4)

u̇n+1 = ˜̇un+1 +∆tγ
1− αf

1− αm

ün+1 (5)

Recurrence relation:

(1− αm)an+1 + αman = (1− αf)ün+1 + αf ün , a0 = ü0 (6)

The recurrence equation (6) definesa in function ofü. a is considered as the acceleration-like
auxiliary variable, whereas̈u is known as the true acceleration [1].

A consistent explicit form of the Generalized-α method is defined by replacing (1) with the
following equilibrium equation:

Mün+1 +Cu̇n+1 +Kũn+1 = Fn+1 (7)

We implement the extended Generalized-α methods by the following̈u-form:

M̃ün+1 = Fn+1 −C˜̇un+1 −Kũn+1 (8)

whereM̃ is defined by

M̃ = M̃I = M+∆tγ
1− αf

1− αm

C+∆t2β
1− αf

1− αm

K, (9)

M̃ = M̃E = M+∆tγ
1− αf

1− αm

C. (10)

M̃I andM̃E are the effective mass matrices for the implicit method and the explicit method,
respectively. At each time step, the accelerationün+1 is solved by Equation (8) and thenun+1,
u̇n+1 andan+1 are updated by Equations (4)-(6).

Both the extended implicit and explicit Generalized-α methods use the integration parame-
ters defined by the following formulas:

αm =
2ρ− 1

ρ+ 1
, αf =

ρ

ρ+ 1
, β =

1

4
(
1

2
+ γ)2 and γ =

1

2
− αm + αf (11)

whereρ = ρ
∞

is the spectral radius of the implicit method at the infinite frequency limit and
ρ = ρb is the spectral radius of the explicit method at the bifurcation point. Note that Equation
(11) adopts the same formulas as the implicit Generalized-α method of Chung and Hulbert [3],
but it is different from the explicit Generalized-α method of Hulbert and Chung [15]. We will
justify these parameters in Section 3.

Moreover, the extended Generalized-α methods can be written in the following form:

MUn+1 = Fn+1 −NUn (12)
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where

M = M
I
=




M 0 K 0

−∆tγ
1−αf

1−αm
I I 0 0

−∆t2β
1−αf

1−αm
I 0 I 0

−(1− αf)I 0 0 (1− αm)I


 , (13)

M = M
E
=




M−∆t2β
1−αf

1−αm
K 0 K 0

−∆tγ
1−αf

1−αm
I I 0 0

−∆t2β
1−αf

1−αm
I 0 I 0

−(1− αf)I 0 0 (1− αm)I


 , (14)

for the implicit method and the explicit method, respectively, and

N =




0 0 0 0

−∆tγ
αf

1−αm
I −I 0 −∆t(1− γ

1−αm
)I

−∆t2β
αf

1−αm
I −∆tI −I −∆t2(1

2
− β

1−αm
)I

−αfI 0 0 αmI


 (15)

Un =





ün

u̇n

un

an





, Fn+1 =





Fn+1

0

0

0





(16)

The damping terms are omitted for simplicity of the expression.

3 ANALYSIS OF THE EXTENDED GENERALIZED-α METHOD

3.1 Relation of the extended implicit method to the method of Chung and Hulbert

In this subsection, we show the relation between the extended implicit method in Section 2
and the method of Chung and Hulbert [3].

The Chung and Hulbert’s method [3] includes only three numerical variablesa, u̇, u and
therefore it is a one-step three-stage method [22]. In contrast, the extended implicit Generalized-
α method includes four numerical variablesa, ü, u̇, u and therefore it is a one-step four-stage
method. By joining the recurrence equation (6) with the basic formulas of the Chung and
Hulbert’s method [3], we obtain the following one-step four-stage variant of their method:

M̂ Ûn+1 = F̂n+1 − N̂ Ûn (17)

where

M̂ =




0 0 (1− αf )K (1− αm)M
0 I 0 −∆tγI
0 0 I −∆t2βI

−(1− αf)I 0 0 (1− αm)I


 , (18)

N̂ =




0 0 αfK αmM

0 −I 0 −∆t(1− γ)I
0 −∆tI −I −∆t2(1

2
− β)I

−αfI 0 0 αmI


 (19)
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Ûn =





ün

u̇n

un

an





, F̂n+1 =





F(tn+1−αf
)

0

0

0





(20)

with tn+1−αf
= (1−αf )tn+1+αf tn. We omit the damping terms for simplicity of the expression

like in Equation (12). Note that the stage number is equal to the row dimension of̂Un in
Equation (20). The recurrence equation (6), which defines the relation betweena and ü, is
consistent with the Chung and Hulbert’s method [6]. For thisreason, the convergence properties
of the one-step four-stage variant method defined by Equation (17) are inherited from those of
the Chung and Hulbert’s method [3].

In the following, we show that the extended implicit method is equivalent to the above one-
step four-stage variant of the Chung and Hulbert’s method.

First, we write the equilibrium equation (1) of the extendedimplicit method attn:

Mün +Cu̇n +Kun = Fn (21)

We multiply Equation (1) by(1− αf) and Equation (21) byαf . By summing them, we obtain

M[(1− αf)ün+1 + αf ün] +C[(1− αf)u̇n+1 + αf u̇n] +K[(1− αf )un+1 + αfun]

= (1− αf)Fn+1 + αfFn (22)

Substituting Equation (6) into Equation (22), we get:

Man+1−αm
+Cu̇n+1−αf

+Kun+1−αf
= Fn+1−αf

(23)

where

an+1−αm
= (1− αm)an+1 + αman (24)

u̇n+1−αf
= (1− αf)u̇n+1 + αf u̇n (25)

un+1−αf
= (1− αf)un+1 + αfun (26)

Fn+1−αf
= (1− αf)Fn+1 + αfFn (27)

Equation (23) is given by Chung and Hulbert as the equilibrium equation for their implicit
method [3]. With the damping terms omitted, it is equivalentto the first row in the equation
system defined by (17).

Secondly, by substituting Equations (2), (3) and (6) into both (4) and (5), we obtain the
Newmark time approximation:

un+1 = un +∆tu̇n +∆t2(
1

2
− β)a2

n +∆t2a2

n+1 (28)

u̇n+1 = u̇n +∆t(1 − γ)an + γan+1 (29)

Equations (28) and (29) are respectively equivalent to the second and the third rows in the
equation system defined by (17).

Finally, the implicit Generalized-α method of Chung and Hulbert [3] is defined by Equations
(23)-(29). With the damping terms omitted, they are equivalent to the first three rows in the
equation system defined by (17). And the recurrence equation(6) is equivalent to the last row
in the equation system defined by (17). As a result, the extended implicit method in Section 2 is
equivalent to the one-step four-stage variant of the Chung and Hulbert’s method [3]. Moreover,
the convergence properties of the extended implicit methodare inherited from those of the
Chung and Hulbert’s method [3].
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3.2 Relation of the extended explicit method to the method of Daniel

Daniel introduced an explicit form of the Generalized-α method [5], which uses the same
integration parameters as the implicit method of Chung and Hulbert [3]. In this subsection, we
show the relation between the extended explicit method in Section 2 and the Daniel’s method.

The Daniel’s method [5] includes only three numerical variablesa, u̇, u and therefore it is
a one-step three-stage method [22]. In contrast, the extended explicit Generalized-α method
includes four numerical variablesa, ü, u̇, u and therefore it is a one-step four-stage method.
By joining the recurrence equation (6) with the basic formulas of the Daniel’s method [5], we
obtain the following one-step four-stage variant of his method:

M̌ Ǔn+1 = F̌n+1 − Ň Ǔn (30)

where

M̌ =




0 0 0 (1− αm)M
0 I 0 −∆tγI
0 0 I −∆t2βI

−(1− αf)I 0 0 (1− αm)I


 , (31)

Ň =




0 ∆t(1− αf)K K ∆t2(1− αf )(
1

2
− β

1−αm
)K+ αmM

0 −I 0 −∆t(1− γ)I
0 −∆tI −I −∆t2(1

2
− β)I

−αfI 0 0 αmI


 (32)

Ǔn =





ün

u̇n

un

an





, F̌n+1 =





F(tn+1−αf
)

0

0

0





(33)

with tn+1−αf
= (1 − αf)tn+1 + αf tn. We omit the damping terms for simplicity of the ex-

pression like in Equation (12). Note that the stage number isequal to the row dimension of̌Un

in Equation (33). The recurrence equation (6), which definesthe relation betweena andü, is
consistent with the Hulbert and Chung’s explicit method [15, 6]. Therefore, it is also consistent
with the Daniel’s method, because the Daniel’s method is theresult of a similarity transforma-
tion on the amplification matrix of the Hulbert and Chung’s explicit method [15, 5]. As a result,
the convergence properties of the one-step four-stage variant method defined by Equation (30)
are inherited from those of the Daniel’s method [5].

In the following, we show that the extended explicit method is equivalent to the above one-
step four-stage variant of the Daniel’s method.

First, we write the equilibrium equation (7) of the extendedexplicit method attn:

Mün +Cu̇n +Kũn = Fn (34)

We multiply Equation (7) by(1− αf) and Equation (34) byαf . By summing them, we obtain:

M[(1− αf)ün+1 + αf ün] +C[(1− αf)u̇n+1 + αf u̇n] +K[(1− αf )ũn+1 + αf ũn]

= (1− αf)Fn+1 + αfFn (35)

We write Equation (4) attn and then obtain:

ũn = un −∆t2β
1− αf

1− αm

ün (36)
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We multiply Equation (2) by(1− αf) and Equation (36) byαf . By summing them, we obtain:

(1− αf)ũn+1 + αf ũn = uP
n+1−αf

(37)

where,

uP
n+1−αf

= (1− αf)u
P
n+1 + αfun, (38)

uP
n+1 = un +∆tu̇n +∆t2(1/2−

β

1− αm

)an (39)

We multiply Equation (5) by(1− αf) and addαf u̇n on both sides. By substituting both Equa-
tions (3) and (6) into the resulting equation, we obtain:

(1− αf)u̇n+1 + αf u̇n = u̇P
n+1−αf

+∆tγ
1− αf

1− αm

aαm (40)

where,

u̇P
n+1−αf

= (1− αf )u̇
P
n+1 + αf u̇n (41)

u̇P
n+1 = u̇n +∆t(1 −

γ

1− αm

)an (42)

aαm = (1− αm)an+1 + αman (43)

Substituting Equations (6), (37) and (40) into (35), we obtain:

Maαm −C(u̇P
n+1−αf

+∆tγ
1− αf

1− αm

aαm)−KuP
n+1−αf

= Fn+1−αf
, (44)

or,
MTaαm = Fn+1−αf

−Cu̇P
n+1−αf

−KuP
n+1−αf

(45)

where

MT = M+∆tγ
1− αf

1− αm

C (46)

Equation (45) is given by Daniel for his explicit method to solve aαm [5]. With the damping
terms omitted, it is equivalent to the first row in the equation system defined by (30).

Secondly, by substituting Equations (2), (3) and (6) into both (4) and (5), we obtain the
Newmark time approximation: Equations (28) and (29). They are respectively equivalent to the
second and the third rows in the equation system defined by (30).

Finally, the explicit Generalized-α method of Daniel is defined by Equations (28), (29) and
(45) [5]. With the damping terms omitted, they are equivalent to the first three rows in the
equation system defined by (30). And the recurrence equation(6) is equivalent to the last row
in the equation system defined by (30). As a result, the extended explicit method in Section
2 is equivalent to the one-step four-stage variant of the Daniel’s method [3]. Moreover, the
convergence properties of the extended explicit method areinherited from those of the Daniel’s
method [3].

We provide some convergence results of the extended explicit Generalized-α method. To
reach second-order accuracy, the algorithmic parameters of the extended explicit method are
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Figure 1: Convergence rate for the extended explicit methodwith ρb = 0.8 (ω1 =
√
k1/m1): (a) with the implicit

treatment of the physical damping by Equation (7); (b) with the explicit treatment of the physical damping by
Equation (47).

defined by Equation (11), as the Daniel’s method [5]. Specifically, the method reduces to first-
order accurate, if the physical damping is explicitly treated in the equilibrium equation, i.e.,

Mün+1 +C˜̇un+1 +Kũn+1 = Fn+1 (47)

Figure 1 plots the numerical error versus the time step for a single degree of freedom mass-
spring system:m1ü + c1u̇ + k1u = 0, with m1 = 1, k1 = 4π2, c1 = 2m1ξ1

√
k1/m1 and

ξ1 = 0.005. The convergence rate ofu, u̇ and ü reduces from two to one with the explicit
treatment of the physical damping (Equation (47)). Note that with the implicit treatment of the
physical dampingu, u̇ andü are second-order accurate whilea is only first-order accurate, as
shown in Figure 1(a).

The Daniel’s method [5] is spectrally identical to the explicit Generalized-α method of Hul-
bert and Chung [15]. For this reason, the extended explicit method is also spectrally identical
to the explicit Generalized-α method of Hulbert and Chung [15]. For example, the bifurcation
limit Ωb and the stability limitΩs, whenC = 0, are:

Ωb = (1 + ρb)
√

2− ρb (48)

Ωs =

√
12(1 + ρb)

3(2− ρb)

10 + 15ρb − ρ2b + ρ3b − ρ4b
, (49)

respectively. Here,Ω = ω∆t denotes the non-dimensional angular frequency, beingω the
natural angular frequency.

4 APPLICATION TO THE MULTI-TIME-STEP INTEGRATION

4.1 Coupled equations of motion

In this subsection, we briefly state the coupled equations ofmotion to be solved by the multi-
time-step integration scheme. We consider a structural domainΩ, which is partitioned intosd
subdomains. By enforcing the velocity continuity at the subdomain interfaces [12], we obtain
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Figure 2: Time discretization of the multi-time-step scheme for two subdomains A and B.

the following semi-discrete coupled equations of motion:

Miüi(t) +Kiui(t) = Fi(t) + LiTΛ(t) (i = 1, . . . , sd) (50)
sd∑

i=1

Liu̇i(t) = 0 (51)

whereMi andKi are thei-th subdomain mass and stiffness matrices, respectively;Fi(t) is thei-
th subdomain load vector;ui(t) is thei-th subdomain displacement vector;Li are the constraint
matrices which express linear relationships at thei-th subdomain interfaces andΛ(t) is the
vector of Lagrange multipliers. The associated initial value problem consists in determining the
functionui = ui(t) fulfilling Equations (50) and (51) for allt ∈ [0, tf ], tf > 0, for given initial
conditionsui(0) = di

0 andu̇(0) = vi
0.

4.2 The multi-time-step integration scheme

For simplicity, we consider a problem with two subdomains A and B. They are integrated
with time steps∆tA and∆tB , respectively, with

∆tA = m∆tB (52)

wherem is an integer and defines the number of substeps. As an illustration of the multi-time-
step scheme, we advance the solution fromt0 to tm = t0 +∆tA by ∆tA in Figure 2.

Hereinafter, we apply the extended Generalized-α methods defined by Equation (12) to solve
the coupled equations (50) and (51). The fully discretized equations can be written as:

M
A
U

A

m = F
A

m + L
A
Λm −N

A
U

A

0 (53)

M
B
U

B

j = F
B

j + L
B
Λj −N

B
U

B

j−1, ∀j ∈ [1, 2, ..., m] (54)

LAu̇A
m + LBu̇B

m = 0, (55)

where

L
i
=





LiT

0

0

0





(56)
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andM, N, U andF are given by Equations (13)-(16). Note that in Equation (55)the velocity
continuity at the subdomain interfaces is enforced only attm of the coarse time scale [20].

In order to solve the coupled problem (53)-(55), we split thekinematic quantitiesUm into
two parts:

U = V +W (57)

whereV = [v̈, v̇, v, af ]
T andW = [ẅ, ẇ, w, al]

T . First,V
A

m andW
A

m of subdomain A at
tm are defined by the following equations:

M
A
V

A

m = F
A

m −N
A
U

A

0 (58)

M
A
W

A

m = L
A
Λm (59)

The above equations (58) and (59) define the free problem and the link problem of subdomain
A, respectively [12].

Secondly,V
B

j andW
B

j of subdomain B are defined by the following equations:

M
B
V

B

j = F
B

j −N
B
V

B

j−1, ∀j ∈ [1, 2, ..., m] (if j = 1, V
B

0 = U
B

0 ) (60)

M
B
W

B

j = L
B
Λj −N

B
W

B

j−1, ∀j ∈ [1, 2, ..., m] (if j = 1, W
B

0 = 0) (61)

The above equations (60) and (61) define the free problem and the link problem of subdomain
B, respectively [12].

Thirdly, from Equation (55) we have:

LAẇA
m + LBẇB

m = −(LAv̇A
m + LBv̇B

m) (62)

We need to define transitional operators in order to connect the kinematic quantities of two
subdomains at the intermediate time stepstj . Note that in (58) and (59) the kinematic quantities
of A are only defined attm of the coarse time scale. In order to solve this problem, we use the
following equation [20]:

Λj = −Sj +
j

m
Λm, ∀j ∈ [1, 2, ..., m] (63)

with Sj = LA(Fj −MAv̈A
j −KAvA

j ).
Below we give a brief derivation of Equation (63), though it is similar to the derivation of the

similar equation in [20]. We write the equilibrium equationof subdomain A at the intermediate
time steptj as

FA
j −MAüA

j −KAuA
j + LAT

Λj = 0 (64)

From Equation (64), by considering Equation (57) we have:

Sj = LA(FA
j −MAv̈A

j −KAvA
j ) (65)

Tj = LA(−MAẅj −KAwA
j + LAT

Λj) (66)

We considerSj as the unbalanced interface reaction for the subdomain A free problem. And we
considerTj as the unbalanced interface reaction for the subdomain A link problem. To derive

10
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(63) we also need to interpolateV
A

j andW
A

j at the intermediate time steptj , ∀j ∈ [1, 2, ..., m]
[20]:

V
A

j = (1−
j

m
)U

A

0 +
j

m
V

A

m (67)

W
A

j =
j

m
W

A

m (68)

Substituting (68) into (66), we obtain:

Tj = −
j

m
LA(MAẅA

m +KAwA
m) +Λj (69)

From (59), we have:
MAẅA

j +KAwA
m = LAT

Λm (70)

Substituting (70) into (69), we have:

Tj = −
j

m
Λm +Λj (71)

From (64) for the equilibrium, we have:

Sj +Tj = 0 (72)

Substituting (71) into (72), we have:

Sj −
j

m
Λm +Λj = 0 (73)

From (73), we get Equation (63).
After substituting (63) into (61), we rearrange Equations (60) and (61). The reason for the

rearrangement is to haveSj in (60) instead of (61) and therefore the link quantityW
B

j is only
dependent on the interface tractionsΛm.

M
B
V

B

j = F
B

j −N
B
V

B

j−1 − L
B
Sj , ∀j ∈ [1, 2, ..., m] (if j = 1, V

B

0 = U
B

0 ) (74)

M
B
W

B

j =
j

m
L

B
Λm −N

B
W

B

j−1, ∀j ∈ [1, 2, ..., m] (if j = 1, W
B

0 = 0) (75)

Note that by summing (74) and (75) the original equation (59)of subdomain B will be recov-
ered. To summarize, we define by Equations (58), (59), (74), (75) and (62) the new multi-time-
step scheme.

4.3 Solution procedure

We propose to use the same solution procedure as the PH method[20]. The solution proce-
dure can be represented in the following four stages.

11
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4.3.1 The preliminary stage

In the preliminary stage, first we solve the subdomain A scaled link problem as:

M
A
Y

A

m = L
A

(76)

with Y
A

m = [ÿA
m, ẏ

A
m, y

A
m, ã

A
ml]

T . Equation (76) is obtained from Equation (59) by assuming
Λm = I. Secondly, we solve the subdomain B scaled link problem as:




M
B

N
B

M
B

. . . . . .

N
B

M
B








Y
B

1

Y
B

2

...

Y
B

m





=





1

m
L

B

2

m
L

B

...

L
B





(77)

with Y
B

j = [ÿB
j , ẏ

B
j , y

B
j , ã

B
jl]

T , j ∈ [1, 2, ..., m]. Equation (77) is obtained from Equation (75)
by assumingΛm = I. Note that from (59) and (75), we have:

W
A

m = Y
A

mΛm (78)

W
B

j = Y
B

j Λm, j ∈ [1, 2, ..., m] (79)

4.3.2 The predictor stage

In the predictor stage, we solve the free problem (58) of subdomain A and the free problem
(74) of subdomain B. Specifically, the free problem of B can bewritten as the following form:




M
B

N
B

M
B

. .. . . .

N
B

M
B








V
B

1

V
B

2

...

V
B

m





=





F
B

1 −N
B
UB

0 − L
B
S1

F
B

2 − L
B
S2

...

F
B

m − L
B
Sm





(80)

4.3.3 The solution of the interface problem

The condensed global interface problem is obtained by substitution of Equations (78) and
(79) (j = m) into (62).

HΛm = −(LAv̇A
m + LBv̇B

m) (81)

with H = LAẏA
m+LBẏB

m. We solve Equation (81) forΛm.

4.3.4 The corrector stage

In the corrector stage, we compute the link quantitiesW
A

m andW
B

j by Equations (78) and
(79). Then, we sum the free quantityV and the link quantityW to obtainU according to
Equation (57). Note that the above procedure can be generalized fromtn to tn+m.

12
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Figure 3: A split SDOF mass and spring system

5 A NUMERICAL TEST

Convergence of the proposed partitioned method can’t be analysed by a modal approach, be-
cause the modal decomposition is no more valid for multi-time-step implicit-explicit schemes
[14]. There are two ways for the convergence analysis of the multi-time-step methods: the first
is the energy approach [12, 20] and the second is to examine some linear problems using sym-
bolic and numerical computation [2]. Because an appropriate energy norm of the Generalized-α
method is difficult to define, we choose to examine the convergence properties of the current
method on a linear model problem.

The model problem to be examined is a split single degree of freedom (SDOF) mass-spring
system. The SDOF system is split into two subdomains A and B, as shown in Figure 3. We
choose to integrate subdomain A with the extended implicit Generalized-α method and subdo-
main B with the extended explicit Generalized-α method. The system parameters are chosen as
follows: mA +mB = 1, kA + kB = 4π2 andr = mA

mB
= kB

kA
. We use the parameterr to adjust

the ratio between the angular frequencies of the two subdomains.
Numerical results for the free vibration with a unity initial displacement are given in Figures

(4) and (5). The substep numberm = 2. By choosingr = ωB/ωA = 2, we haveωA∆tA =
ωB∆tB = 0.5, beingωA andωA the subdomain angular frequencies. In Figure (4), we see
a significant amplitude decay whenρ = ρ

∞
= ρb = 0 . Note thatρ

∞
is for the implicit

subdomain A andρb is for the explicit subdomain B. The amplitude decay is much less when
ρ = ρ

∞
= ρb = 0.5. Whenρ = ρ

∞
= ρb = 1, we don’t see an amplitude decay by comparing

the numerical results to the exact solution. Moreover, the results of the current method with
ρ = ρ

∞
= ρb = 1 are compared to the results of the PH method. As shown in Figure (5), they

are almost overlapping each other. Similar numerical results are given in Figure (6) and (7) for
m = 100. By choosingr = ωB/ωA = 5, we haveωA∆tA = 0.25 andωB∆tB = 0.0125. We
see again the different amplitude decay rate of the current method withρ = ρ

∞
= ρb = 0,

ρ = ρ
∞

= ρb = 0.5 andρ = ρ
∞

= ρb = 1, respectively. Note that with the smaller∆tA the
numerical results forρ = ρ

∞
= ρb = 1 are more accurate in comparison to Figure 4. And

again the results of the current method withρ = ρ
∞

= ρb = 1 almost overlap the results of the
PH method, as shown in Figure (7). Because the PH method is energy preserving, the current
method is not dissipative at the subdomain interfaces and its numerical dissipation is solely
decided by the Generalized-α methods of each subdomain.

We study the convergence rate for the multi-time-step method by plotting the numerical error
versus the time step. As shown in Figure 8, the current methodis second-order accurate both
for the single time scale (m = 1) and for the multiple time scales (m > 1). We present the
results for the current method withρ = ρ

∞
= ρb = 0.8 andr = 10.
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Figure 4: Velocity responses for the current method withm = 2 andωA∆tA = ωB∆tB = 0.5.

Figure 5: Velocity responses: comparison between the current method withρ = ρ∞ = ρb = 1 and the PH method
for m = 2.
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Figure 6: Velocity responses for the current method withm = 100, ωA∆tA = 0.25 andωB∆tB = 0.0125.

Figure 7: Velocity responses: comparison between the current method withρ = ρ∞ = ρb = 1 and the PH method
for m = 100.
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Figure 8: Convergence rate of the current multi-time-step scheme with: (a)m = 1; (b) m = 2; (c) m = 20; and
(d)m = 200 (ω =

√
(kA + kB)/(mA +mB)).
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6 CONCLUSIONS

The proposed multi-time-step scheme enables to couple arbitrary Generalized-α methods
with different time scales in each subdomain. The Generalized-α methods can either be the
extended implicit method or the extended explicit method. Both of them are the variants of the
implicit and the explicit Generalized-α methods. The uniform formulas can be used to decide
upon their algorithmic parameters. The numerical dissipation of the partitioned method is found
to be solely decided by the Generalized-α methods in each subdomain. Moreover, the multi-
time-step method is still second-order accurate as the monolithic algorithms in each subdomain.
Work is in progress to study the stability of the partitionedmethod by spectral analysis, though
we find in the numerical simulations that the method is still stable when the explicit subdomain
satisfies its own stability condition.
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