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Abstract. Frame structures with viscoelastic (VE) dampers mounted on them are considered
in this paper. Generalized rheological models are used to model the VE dampers. The finite
element method is used to derive the equations of motion of a structure with dampers and
such equations are written in terms of both physical and state-space variables. A solution to
motion equations in the frequency domain is provided and the dynamic properties of the
structure with VE dampers are determined as a solution to the appropriately defined eigen-
value problem. The dynamic characteristics of a relatively large structure with VE are deter-
mined and discussed.
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1 INTRODUCTION

Viscoelastic (VE) dampers are a passive type ofggndissipation devices, frequently
used to mitigate excessive vibrations of structdesto winds or earthquakes. The properties
of VE dampers, such as the possibility of energgigation and stiffness, are frequency and
temperature dependent and are commonly definestimstof experimentally obtained storage
and loss modules. The frequency dependence ofrtdpegiies of VE dampers can be accu-
rately described by means of rheological modelghBbe classical rheological models and
the so-called rheological models with the fractiaterivative are used [1, 2].

The dynamic analysis of frame or building structusmgith viscous and/or viscoelastic
dampers are presented in a number of papers [B Ttid most popular models of VE damp-
ers are the simple rheological models, i.e., thivikemodel and the Maxwell model. In pa-
pers [6 — 8] the simple Maxwell model was used. &doer, in papers [7, 9, 13] the simple
Kelvin model is used to describe the dynamic bedrawi dampers. These simple models are
used in [7, 12, 13] to solve the problem of optimdesign of structures with VE dampers.
However, as shown in [15], the simple Maxwell oK models cannot accurately approxi-
mate the frequency dependence of the storage nwodualli the loss modulus of VE dampers.
Recently, more advanced models of VE dampers hiseebeen used when considering the
dynamic analysis of structures with VE dampers. d@jn@amics of structures with VE damp-
ers modeled by means of the generalized rheologicalels is very rarely discussed in the
literature. These models are used in papers [404] In papers [3, 5, 14] a three-parameter
rheological model with the fractional-derivative deb is used to model the VE dampers’ be-
havior. Moreover, rational polynomial approximatiorodeling is used in paper [17] for an
analysis of structures with VE dampers.

In this paper, frame structures equipped with VEhpers are considered. The frame is
treated as a linear system while the generalizddiKenodel and the generalized Maxwell
model are used to accurately describe the dynaatiawbour of VE dampers. The considered
generalized models of VE dampers contain more petensthan the rheological models with
the fractional derivative but lead to traditionéferential equations of motion. The finite ele-
ment method is adopted to write the equation ofianobf the considered system in terms of
both physical and state nodal variables. In pddr¢cithe solution of motion equation of a
whole system in the frequency domain is considerati the dynamic properties of structure
with VE dampers are determined. The frequencieshoétion, the non-dimensional damping
ratios together with the corresponding eigenveckoesdetermined as a solution to the appro-
priately defined linear eigenvalue problem. Moreagthe frequency response functions are
also determined. The results of typical calculatiare presented and discussed.

Up to now, the dynamic characteristics of strudusgth VE dampers modeled by means
of the generalized rheological models have not lwessidered or discussed in the available
literature. Moreover, it was found that the VE da&mmodel is not unique, i.e., both of the
considered models can be used for modeling acdurtdte real damper for a sufficiently
great number of model parameters.

2 THE GENERALIZED RHEOLOGICAL MODELSOF VE DAMPERS

The frequency dependence of the properties of fapéas can be captured using general-
ized rheological models. The generalized Kelvin piahd the generalized Maxwell model,
as shown in Figs. 1 and 2, are used for modeliegyls dampers in this paper. The general-
ized Kelvin model is built of a spring and a setld m Kelvin elements connected in series
(see Fig.1). The Kelvin element is build of a sgrand a dashpot connected in parallel. The
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generalized Maxwell model is built of the springlaa set of them Maxwell elements con-
nected in parallel (see Fig.2). The Maxwell elemsnthe classical Maxwell rheological
model, i.e., the spring and dashpot connectedriesseAs shown in [18], the frequency de-
pendence of the properties of VE dampers can h&raety taken into account using the gen-
eralized rheological models.
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Figure 2: A schematic of the generalized Maxweldelo

The concept of superelement and the concept odlbedanternal variables have been used
in describing both models. The dynamic behaviothef Kelvin damper can be described by
means of the following equations:

Uo (1) = Ko (s (1) = Gy (1)) (1)
U (t) = K; (@42 (8) = T (1) + € @uujan (1) = Ty 1)) )
Upn () = Koy (@3(8) = Tym) + Con (@5 (1) = Ty (3)

whereu; € )is the force in the-th element of the modeli & 0}..,m), k andc, are the
spring stiffness and the damping factor of the dasbf thei-th element of the model, respec-
tively, and symbolgy, (t) and g, ¢ ) denote the external nodes displacements giveneiiot
cal coordinate system (compare Fig.1). Moreover dbt denotes differentiation with respect
to timet and the symbo#,,; t( Jenotes the internal variablex1..,m).
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After introducing the vector of external reactioﬁg(t) :col(ﬁi(t), F~22 ), F~23 ), F~24(t))
(see Figure 1) and utilizing the equilibrium coraht of the external nodegzl(t) =-U,(t),
F~{2 (t)=0, Iil(t) =u,(t) and F~{4(t) = Owe can write the following matrix equation:

R,(t) =K ,d,(®) +K ,d,(t) +C,d,®) +CLa. () . 4)

where g, (t) = col (G (t), G, (), Gs (), A4 €)), G (t) = col (Qus (1), -, Gum @) . The matrices
}ZZZ, }ZM, C~:ZZ and C~:M are defined in Appendix A.
Moreover, the equilibrium conditions of the intdrm@odes, i.e.,u,_,(t) —u,(t) = Ofor

I =1..,m lead to the following matrix equation:
K ez (1) + Ky (1) + C iz () + C oG 1) =0 (5)

whereK ,, =K1, C,, =Cr, and the matriceX ,,, C,,, are defined in Appendix A.

The equation of motion of the Kelvin model of a W&mper written in the local coordinate
system can be finally presented in the form:

Rq(t) =K g (t) +Cqlig (t) | (6)
whereR 4 (t) = col (R, (t), 0), dq (t) = col (T, (), T (),

>4 l:Rzz IZzw j| =~ l:ézz E:zw :|

Ke=| % ™1, C,=|7 . (7)

Transforming nodal parameters to the global coatéirsystem, the usual transformation
of displacements of the external nodes of the dangpaesed while the internal variables of
the damper are still defined in the local coorddmnatstem. This means that the transformation

matrix is:
T, 0
T, = ¢ , 8
d {o J (8)
where
~ [To ~ Cs
T L]
0T -SC

c=cosa, s=sina, a is the angle between the global and local cootdiegstems andl is
the (mxm) identity matrix.
In the global coordinate system the generalizedikehodel equation has the form:

R.(t)=K4q,t)+Cuq, () , (10)

where
R, (1) =col(R, (), 0) =T{R,T, . R,(t) =col(R ), R, (t), Ry (t). R, €)),
g, (t) =col(g, ), a,(t) =0, 1)) =T4q,T, , 9,(t) =col(q, t),q, 1), a; (). q, ¢)) , (1)
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are the vector of nodal reactions and the vectoilodal parameters, respectively, in the global
coordinate system. The explicit forms of matrites andC, are given in Appendix A.

The dynamic behavior of the Maxwell damper coulddbscribed in a similar way. Using
the internal variables defined in Fig. 2, the foliog equations can be written:

Uo (1) = Ko (G (1) - T 1)) (12)
Uis (t) = K; (Qu; (1) — T (1)) (13)
Uig () = G (G5(t) = Gy, @) (14)

for the spring element and for tiveh Maxwell element (= 1..,m), respectively. The sym-
bolsu, t), u,(t) andu, €)in the above relationships denote the force irsfireng element,
the force in the spring of theth Maxwell element, and the force in the dashpothefitth

Maxwell element, respectively.
The nodal reactions in the local coordinate sysiesn

m m
RO=-U®-Y te® , RM=0, R®=u®+D us®, R®=0. (15)
i=1 i=1

After introducing relationships (12) — (14) intoiq(15) we obtain again Eqgn (4) though
its matrices are defined in Appendix B. Moreoverthe global coordinate system, Egn (10)
is also valid with the matrice ; andC, given in Appendix B.

Many particular rheological models described in litexature can be obtained by varying
the number of elements in the generalized modeidioreed above.

However, the simple Kelvin and Maxwell models, whicontain only one Kelvin or
Maxwell element, respectively, are not particulastances of the generalized models being
discussed because the spring element with stiffkgss not present. For the reader’s conven-
ience, a brief description of the above-mentionatpke models is also presented. In the ma-
trix notation the equation of both models couldwréten in the form of Egns (6) and (10).
The matrices and vectors appearing in these eaqsatie defined in Appendix C.

3 EQUATION OF MOTION AND DYNAMIC CHARACTERISTICS OF
STRUCTURESWITH VE DAMPERS

Planar frame structures with VE dampers are modeseag the finite element method.
A typical two-node bar element with six nodal paesens is used to describe the structure
treated as the elastic system. The mass and ssfimatrices together with the vector of nodal
forces of the element can be found in many booke dquation of motion of the structure
with VE dampers modeled using the generalized dgchl models can be written in the fol-
lowing form:

M Ssqs(t) +Cssqs(t) +Csdqd(t) +K ssqs(t) +K sdqd (t) = ps(t) ) (16)
Casls(t) +Cyqlq (t) +K 405 (1) +K 4q0q (1) =0, (17)

where the symbols1 _, C_, C, =CL, C,, K., K, =K andK , denote the mass,
damping, and stiffness matrices of the system, (§gucture with dampers), respectively,
written in the global coordinate system. The dini@msof matricesM _, C_ =C® +C
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andK =K +K@ is (nxn). The matricesM _, C® and K® describe the inertia,
damping, and elastic properties of the structurthaut dampers, while the matrice€?,
K@ and the ixr) matricesC_ =CJ , K, =K represent the effect of the coupling of
dampers with the structure. The Xr ) matricesC, and K ,, describe the damping and

stiffness properties of dampers with braces, rasmdg. Moreover,q, () q, (t) andp, ()

are the global vectors of nodal generalized digstants, internal variables and nodal excita-
tion forces, respectively. The concept of propor@iodamping is used to model the damping
properties of the structure, i..cC =aM _ +k K wherea andx are proportionality fac-
tors.

The equation of motion written in terms of stateiatsles will also be useful. After intro-
ducing the following state vector(t) = col (g, (), g, (), a4 t ( nd adding the equation:

M G.(t) —M (4. (t) =0, (18)
to the system of Eqns (16) and (17) the followitadesequation could be written
AX(t) + Bx(t) =s(t) , (19)
where
C. M  C, Ks 0 Ky p(t)
A=M, 0 O |, B=0-M 0 |, s(t)=9 0 ;. (20)
Cds O Cdd K ds O K dd O

Please note that the matricAsand B are symmetrical and the matrik is non-singular.
The solution to the homogenous state equationwteens(t) =0, is assumed in the form:

X(t) =aexp(st) . (22)
Introducing (21) into the state equation (19) w&aobthe following eigenvalue problem:
(sA+B)a=0. (22)
The linear eigenvalue problem (22) must be soleedetermine theZn+r ) eigenvalues

s and eigenvectorg, . In the case of an undercritically damped striecthe 2n eigenvalues

(eigenvectors) are complex and conjugate humbeddrs) while the remaining eigenval-
ues (eigenvectors) are real numbers (vectors).

The dynamic behavior of a frame with VE dampershigracterized by the natural frequen-
cies @ and the non-dimensional damping paramgter$he above-mentioned quantities are

defined as:
C‘)|2 = :Uiz +/7i2 ) vi=-ula, (23)

where 1 =Re(s ) 77, =Im(s ). The formulae (23) refer to complex eigenvaluey.on

The third dynamic characteristic of the considesgstem are the frequency response func-
tions. Before determination of these functionsitiseful to rewrite equations of motion (16)
and (17) in the form of the following one matrixuedjon:

Mg(t) +Cq(t) +Kaq(t) =p() , (24)
where
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Me0] _ [CeCul . [KeKa C(@.0] . (PO
M{ 0 0}’ C{cds Cdj’ K{de KdJ’ qm‘{qd(r)}’ p“)‘{ 0 } (3)

To determine the frequency response functions téeedyg state harmonic responses of the
system are considered. If the excitation forcey tarmonically in time, i.e., when

p(t) = Pexp(at) , (26)
then the steady state response of the system oodsideration can be described by:
q(t) = Qexp(At) , (27)

wherei =+/-1 is an imaginary unit.
After substituting Egqns (26) and (26) into Eqn (24¢ following standard formula de-
scribes the matrix of the frequency response fansti

H(A) = (=2 M +iAC+K)™ . (28)

If the structure with dampers modeled by the simypéexwell model is considered, then all
of the relationships presented above in this sedie valid provided that the matrices given
in Appendix C are used to generate the global oegrappearing in Eqns (16) and (17).

The vector of internal variables, t (does not exist in the case of a structure withglam

ers modeled by the simple Kelvin model, and theiomo¢quation (16) takes the form:
M ssqs(t) + (Css +Cdd)qs(t) + (K ss +K dd)qs(t) = ps(t) . (29)

The matricelC, andK ,, appearing in (29) are built from the matric@s andK , re-

spectively, given by formulae (C.4).
The state equation has the form of Equation (13rejmnow

_ q,(t) _|Cs+Cyy Mg | KgtKy O _[p()
N T

Moreover, the matrix of frequency response funciomust be defined as
HO) = [- M _+id(Co +C ) +K o +K ] (31)
4 RESULTSOFTYPICAL CALCULATIONS

4.1 Description of arepresentative structure and VE dampers

An eight-storey RC frame with three-bays is sel@ttedetermine the dynamic characteris-
tics of a structure with dampers. The frame isgtesil according to the EC8 Part 1 for class B
soils. The height of the columns B0 m, the span of the beams39¥ m and Young’s
modulus for concrete i810 GPa . The dimensions of the cross-section ofsthectural ele-
ments are presented in Table 1 while the unit nsaskthe frame elements are given in Table
2.

Table 3 shows the natural frequencies of vibratibthe frame without dampers. The dy-
namic properties of the structure are obtained hy wf a two-dimensional analysis of the
frame. Any axial deformations and internal dampafithe structure are neglected.

The dampers are attached in the middle bay oftoalts of the structure. The dampers are
modeled using the following rheological modelsthg simple Kelvin model; ii) the simple
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Maxwell model; iii) the generalized Kelvin modeltiviseven parameters, and iv) the general-
ized Maxwell model also with seven parameters.

Lateral column Central column Beams

Storey level
[cm] [cm] [cm]
7,8 35%35 40x40 30x40
5,6 40x40 45x45 30%x45
3,4 45x45 53%53 30x50
1,2 50x50 60x60 30x50

Table 1: Dimensions of eight-storey frame elements

Unit lateral Unit central Unit beam
Storey level column mass column mass mass
[kg/m] [kg/m] [kg/m]
7,8 306.2 400.0 15000.0
5,6 400.0 506.2 15000.0
3,4 506.2 702.2 15000.0
1,2 625.0 900.0 15000.0

Table 2: Unit mass of eight-storey frame elements

Natural frequencies [rad/sec]

3.1311 8.6582 15.4268 23.7804

31.2647 40.1148 42.1251 51.1550

52.3598 57.6067 65.6532 69.9862

Table 3: Natural frequencies of frame without darape

Data from the real experiment are not adopted ig gaper. Instead, the storage and loss
modulus of dampers are calculated from the formulae

K'(A) =k +cA? cos@mr/2) , K"(A) =cA? sin(arr 12) , (32)
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which are the analytical formulae of the fractiedativative Kelvin model of dampers. The
chosen parameters of the fractional-derivative Kelvmodel are: a =063 |,

k=04x10°N/m andc=36x10°Nsed/m. The value of the parameter is similar to
the one used in papers [1, 4], but the originaleslofk andc are divided by 2.0.

In paper [1] the parameters of generalized modedsoatained by minimizing the mean
square norm of the differences between the targetedules and the analytical modules of
the considered model. The parameters of the geredaKelvin model and the generalized
Maxwell model, both with seven parameters and us¢lis paper, are given in Table 4.

Stiffness Damping factor
(x10°%) [N/ m| (x10°) [N sec/m]
Kelvin model Maxwell model Kelvin model  Maxwelladel
K, 57.650 0.1065 - -
k, 18.350 33.385 c, 2.729 1.478
K, 6.160 3.310 c, 6.190 1.732
K, 0.5545 1.443 c, 8.675 8.305

Table 4: Parameters of generalized Kelvin and Mdixwedels

The energy dissipated by the damper was calcukdsdming that the amplitude of a har-
monically varying vibration of the damper is eqt@l001m in all of the considered cases.
From this calculation, it can be concluded thatltdss modulus and dissipation energy of the
fractional-derivative Kelvin model and both genemadl models are approximately equal in
the range 0 — 15.0 rad/sec of excitation frequemhis range of frequency covers the range of
the first three natural frequencies of vibratiorited structure considered.

The values of the parameters of the simple Kelvisdeh are:k = 0.74637x10" N/m,
c=0.134420x10" Nsec/m and the values of the parameters of the simplevidtbmodel are:

k =1.90392x10" N/mand ¢ =0.338669<10" Nsec/m. These parameters are calculated by
minimizing the mean square norm of difference betwthe target modules, given by (32),
and the analytical modules of the respective mddielvever, the dissipation energy of simple
models and the dissipation energy of the fractialeaivative model are not equal and, as ex-
pected, the differences are significant, especfaliyhe simple Maxwell model.

Chevron braces are used to connect the dampergheitstructure. The braces are made of
HEB 200 stainless steel profiles of which the pastars are:EA=1.60105<10° N and
EJ =1.1685x10" Nm?.

4.2 Comparison of dynamic characteristics of considered frame

Results of the solution to the eigenvalue problenmespresented in Tables 5 — 10. The real
and the complex conjugate numbers are obtainetjaswalues. In Table 5 the values of the
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first three complex conjugate eigenvalues are gfeerall of the considered models (the two
parameter model denotes the simple Kelvin or Makmeldel).

Kelvin model of damper with Maxwell model of dampath

7 parameters 2 parameters 7 parameters 2 parameters

-0.18461 +13.30499 -0.1224 +i3.3754 -0.1826(B30439 -0.25113 +i3.31731

-0.99448 +19.39577 -0.9846 +i9.28452 -1.0139%450962 -0.58872 +i9.83667

-2.09561 +116.8189 -2.4740 +i16.0635 -1.7674581%.2242 -0.56505 +i17.0933

Table 5: The first three complex conjugate eigemealof frame with dampers

Kelvin model of damper with  Maxwell model of damper with

7 parameterssec '] 7 parametergsec ']
-0.377771 -2.90147 -0.166298 -1.83572
-0.382183 -2.93738 -0.167949 -1.85359
-0.383780 -2.95781 -0.168588 -1.86274
-0.386515 -3.01417 -0.169621 -1.89241
-0.389423 -27.3841 -0.170717 -15.3707
-0.391331 -28.5853 -0.171435 -16.1435
-0.392254 -29.2224 -0.171781 -16.6836
-0.395517 -30.4773 -0.173008 -17.2797
-2.72596 -31.9943 -1.73882 -17.9245
-2.80627 -33.8003 -1.78531 -18.8592
-2.84271 -35.3870 -1.78985 -20.0361
-2.85854 -36.0392 -1.80968 -20.5792

Table 6: Real eigenvalues of frame with dampers

Given in Tables 6 and 7 are all real eigenvaludained for all of the models considered.
The real eigenvalues for both of the generalizedatsocould be divided into three groups,
each with eight elements. The values of element:& group are of the same order as the

10
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eigenvalues of the eigenproblem obtained for oparsg¢e damper. For the generalized Kelvin
model of damper with seven parameters the abovéiomed problem has the following form:

- kl kl + k2 - kz +S| — Cl QI. + C2 - CZ X2 = O y (33)
0 -k, Kk, +Kg 0 -c, C,+C3l)(X%s 0

from which we obtain:s, =-0.3975sec’, s, =-3.0518sec* and s; =-41418sec*. In the

case of the generalized Maxwell model the equatairnthe above-mentioned eigenproblem
are uncoupled and the real eigenvalues are appabeiynequal to the inverse of the relaxa-
tion time of the Maxwell element (with a minus signe., in the case under consideration,
s, = -k /¢, =-22588sect, s, =-1911sec’ ands; =-0.1738sec*. A similar remark is true
for the real eigenvalues of the frame with dampedsleled using the simple Kelvin model
and presented in Table 7.

The reason why real eigenvalues exist for the framntle dampers modeled by the simple
Kelvin model, given in Table 8, is completely difat. The loss factor of the simple Kelvin
model is a linear function of excitation frequengis means that higher modes of vibration
are more strongly damped, compared with lower omed,could be overdamped, which hap-
pens in the case under consideration where eighemof vibration are overcritically damped.
In other cases, all modes are undercritically dainfieis a qualitative difference, compared
with other damper models.

Maxwell model of damper with
2 parametergsec ']

-3.75157 -4.57767
-4.09211 -4.79722
-4.27776 -4.98507
-4.53600 -5.32095

Table 7: Real eigenvalues for frame with damperdetex by the simple Maxwell model

Kelvin model of damper with 2 parametefgec?]

-231.120 -254.940 -14840.1 -14847.5
-240.435 -258.708 -14845.1 -14848.7
-245.480 -261.561 -14846.0 -14849.6
-250.975 -262.479 -14846.9 -14855.5

Table 8: Real eigenvalues for frame with damperdeten by the simple Kelvin model

11
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The first three natural frequencies of the framéhwdampers modeled using different
models are presented in Table 9. As is easilyieérithe damper model does not significantly
change the first three natural frequencies of tamé. The maximal difference is 6.1%. How-
ever, as is obvious from Table 10, the influencéhefdamper model on the non-dimensional
damping ratios is substantial because the maxiiffatehce is of the order of 80%.

Kelvin model of damper with Maxwell model of damper with

Natural
7 parameters 2 parameters 7 parameters 2 parameters
frequency [rad/sec] [rad/sec] [rad/sec] [rad/sec]
W 3.31014 3.37757 3.30944 3.32681
w, 9.44825 9.33658 9.56352 9.85427
W, 16.9490 16.2529 17.3146 17.1026

Table 9: The natural frequencies of frame with darap

Kelvin model of damper with Maxwell model of dampéth

Damping 7 parameters 2 parameters 7 parameters 2 parameters

ratio
¥ 0.0557702 0.0362529 0.0551757 0.0754865
A 0.105256 0.105455 0.106023 0.0597427
A 0.123642 0.152223 0.102078 0.0330390

Table 10: Non-dimensional damping ratios of franithwampers

A comparison of the first and second modes of abnais shown in Figures 3. The dashed
lines represent the shape of vibration of framédawit dampers while the real and imaginary
parts of eigenvector for the frame with damperssti@vn by the solid line and the solid line
with crosses, respectively. Moreover, the imaginaast of eigenvectors is multiplied by 10 in
order to show this quantity in detail. The calcwlatis done for dampers modeled using the
Kelvin model with seven parameters. It is easylisenve that the real part of both eigenvec-
tors is very similar to the respective mode of atlon of the frame without dampers.

The frequency response functions are also calcukatd one example is shown in Figures
4 where the frequency response function correspgnidi the horizontal displacement of the
eighth storey is shown. The frequency responseectow the frame with dampers modeled
using the generalized Kelvin model (the solid liaed the simple Kelvin model (the dashed
line) is shown.

12
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9 9
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Figure 3: A comparison of modes of vibration fdrame without dampers (the dashed lines) with gz part
of eigenvector for frame with dampers modeled leyghneralized Kelvin model (the solid line). Theagmary
part of the eigenvector is multiplied by 10 andwhdyy the solid line with crosses

10°

modulus of H(36,36)

frequency of excitation [rad/s]

Figure 4: Frequency response function of frame d@mpers modeled by the generalized Kelvin motel (t
solid line) and by the simple Kelvin model (the lded line)

5 CONCLUSIONS

Several models of dampers are used in this papdegoribe the dynamic behaviour of
frame structures with VE dampers. A family of getieed rheological models, including the
very often used simple Kelvin and Maxwell modelge eompared in detail. The comparison
iIs made in the frequency domain for a carefullyestd frame structure with VE dampers.
The finite element method is used to derive equataf motion.

Several conclusions can be formulated on the lodigiee results of numerical analysis pre-
sented above. The most important ones are listiesvbe

13
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» Different models are able to correctly describe digaamic behaviour of VE dampers.
The seven-parameter Kelvin model and the sevenymea Maxwell model provide al-
most identical results. This conclusion is in agreat with the results presented by
Singh and Chang [4] where the generalized Kelvid Bfaxwell models are used as
models of VE dampers.

* The simple Kelvin and the simple Maxwell models ao¢ able to correctly describe, in
the frequency domain, the dynamic behavior of framwéh VE dampers. In particular,
relative differences concerning the non-dimensialaahping ratios are large.

* The linear eigenvalue problems must be solvedderoto determine the dynamic charac-
teristics of the frame with VE dampers. The solutpyocedure for this problem is much
simpler than the solution procedure for the nomineigenvalue problem obtained when
the fractional-derivative Kelvin model or the complmodulus model are used as the VE
damper model.

* There are some qualitative differences betweemeabalts obtained. For the frame with a
fixed number of VE dampers the total number of eigdues and eigenvectors depends
on the selected model of dampers and the numbgaraimeters of the models. Both the
real and complex eigenvalues are obtained. The auwibreal eigenvalues depends on
dampers model.
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6 APPENDIX A

In this appendix the explicit form of the matriagsed to describe the generalized Kelvin
model of the VE damper is given.

'k, 000 [ 0000
~ 0000O0 ~ 0000
KZZ = , CZZ = , (Al)
0 0k, 0 00c,0
| 0000 | 0000
-k, 0....0....... 0 [0 0...0....... 0
~ 0 0....0....... 0 ~ 0 0.....0....... 0
sz= , Czw= ) (A2)
0 0..0...—k, 0 0...0...-C,
| 0 0..0....0 | 0 0..0....0
Ky +K =Ko 0o 0 O o 0 ]
~k Kk +Kyd0 O Ouoorres 0 0
R‘vwv A ’ (A.3)
0 O k., kg tk =K 0o o
0 OO0 Ouvrrem Ky Koy K

14
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¢ -Chinn0 0 Oerrerreees 0 0
-C, G +Chnn! 0 0 O.ovnnnn 0 0
vav e , (A.4)
0 O.vvvrnene C, C,+C —Cvnnnns 0 0
e 0...........0 0 0.....mCpy Cpy+C |
T KZZ KZW T~ CZZ CZ\N
Ky =TqKyTy = K K . Cy =TyCyTy = c C , (A.5)
¢k, csk, O O | 00 0 O
csk, sk, 0 O 00 0 O
Kzz = , sz = ) (A6)
0 0 c%k, csk, 0 0 c’c, csg,
0 0 csk, sk, 0 0 csg, CsG,
-ck, O.....0....... 0 0 0.....0....... 0
T -3k, O.....0....... 0 T 0 0.....0....... 0
K, =Kl = , C,, =Cl = . (A7)
0 0..0...—-ck, 0 0...0...—-cc,
0 0..0.—sk_ 0 0..0...-SC,
Koo =K o Cuw =Ciou (A.8)

7 APPENDIX B

In this Appendix the explicit form of matrices ustxddescribe the generalized Maxwell

model of the VE damper is given.

I m | 00 0 O]
k,+Y k 0-k, O
° Zl ° 000 O
K = 0o 0 00|, C = m
“ “100>¢c0
-k, 0 kO =
. 0 0 0 0] 100 0 O]
K —KyeoromKiroroo =K 0 O.... 0
~ 0 O... 0.ee. 0 ~ 0 O... 0
sz: ) Czw=
0 O.... 0. 0 -C —Cy..eemC,
0 O.. 0....... 0 | 0 0. 0
}ZWW —dlag(kl, Kyyooonnenn ,km,) , EWW :diag(cl, Chpernnn
TR _| Kz Ka =T7C _| C=
Kd_TdeTd sz KWW ' Cd_TdCde_ sz
wa:wa’ CWW:EWW’
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....... 0
....... ol ©.2)
e O
rCr) s (B.3)
CM} , (B.4)
C o
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R. Lewandowski and A. Bartkowiak

cz[ko+z i} tﬁ(ko+z i} —-c’k, —csk,
i=1 i=1
K,= C{k0+z i] Sz(ko"'z ij —csk, —s%kq |, (B.6)
i=1 i=1
-c’k, - csK, c’k, csk,
| —csk, - sk, csk, sk, |
00 0 0
00 O 0 ok, = Ky~ Koo m K
m m -k —K,.....mSKi ....... - sk
C,=| 00c>c esyc|, K,=Kl=[ "+ ? ' m (B.7)
= = 0 O.... 0....... 0
00 Se 3 0 O.... 0., 0
L i=1 i=1 |
0 O.... 0....... 0
: 0 Ocewo O 0
c, =Cl = (B.8)
-cC, —CC,.....— CG, .......— CC,,
—SC, — G, SC v m SC,,

8 APPENDIX C

The explicit form of the vectors and matrices ugsedescribe the simple Kelvin model of
VE damper is:

dq (t) =0, (t) = col (G (), T2 (t), G5 (1), Au (1)) (C.1)
10-10 10-10
Rd:RZZ:1 00 0O éd:E:ZZ:Cl 00 0O (C.2)
-10 10 -10 10
000O0 0000O0
Oq(t) =0, (t) =col (o, t), 0, t), a5 (t), 94 (1)) (C.3)
[ ¢? s -c? -cs| " ¢? s -c? -cs|
cs s? -cs -¢° cs s? -cs -¢§°
Ko=K,=k| ) Ca=C,=c| ) . (C4)
-c2-cs  ¢? cs -c?2 -cs  c? cs
-cs -s® s §° | |-cs -s® cs §° |

The explicit form of the matrices used to describe simple Maxwell model of VE

damper is:

g (t) = col (G, (t), G, (1), A3 (t). G, 1)),

ad (t) =col (az (t)1 aw t ( ))
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=

00
00 ~
00
00

|
=

! R w ~ [ kl] ! (C7)

N
o o o
o o o ©
é—!

00 00
~ 00 00 ~ ~ ~
2= 00 ¢ 0| C2=%=|_ |+ Cw=lal. (C8)

00 0O

o O o O O

o .0

qq(t) =col(a, (), a, t () (C.9)

K_ K
q,(t) =col(q, (t),d, (), a3 (), a,t)) . d,(t) =col(a,,(t) , Ky { Kzz KM} , (C.10)

wz ww
K, K Cc,C
Kd{Kzz KM}, cd:{czz Cm}, (C.11)
wz ww wz ww
[¢2 cs 00| -c
2 —_
cs s 00 T S
K_ =k , K, =K _ =k , K =k, C.12
z 1 0 O OO 2w 2w 1 0 ww [1] ( )
|0 0 00| 0
0000 0
0000 . 0
sz:Cl 00c2 cs |’ CZ\N:CZW:C]_ e | wa:[cl] (C.13)
| 00 cs §°| -
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