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Abstract. Frame structures with viscoelastic (VE) dampers mounted on them are considered 
in this paper. Generalized rheological models are used to model the VE dampers. The finite 
element method is used to derive the equations of motion of a structure with dampers and 
such equations are written in terms of both physical and state-space variables. A solution to 
motion equations in the frequency domain is provided and the dynamic properties of the 
structure with VE dampers are determined as a solution to the appropriately defined eigen-
value problem. The dynamic characteristics of a relatively large structure with VE are deter-
mined and discussed. 
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1 INTRODUCTION 

Viscoelastic (VE) dampers are a passive type of energy dissipation devices, frequently 
used to mitigate excessive vibrations of structures due to winds or earthquakes. The properties 
of VE dampers, such as the possibility of energy dissipation and stiffness, are frequency and 
temperature dependent and are commonly defined in terms of experimentally obtained storage 
and loss modules. The frequency dependence of the properties of VE dampers can be accu-
rately described by means of rheological models. Both the classical rheological models and 
the so-called rheological models with the fractional derivative are used [1, 2]. 

The dynamic analysis of frame or building structures with viscous and/or viscoelastic 
dampers are presented in a number of papers [3 - 14]. The most popular models of VE damp-
ers are the simple rheological models, i.e., the Kelvin model and the Maxwell model. In pa-
pers [6 – 8] the simple Maxwell model was used. Moreover, in papers [7, 9, 13] the simple 
Kelvin model is used to describe the dynamic behavior of dampers. These simple models are 
used in [7, 12, 13] to solve the problem of optimum design of structures with VE dampers. 
However, as shown in [15], the simple Maxwell or Kelvin models cannot accurately approxi-
mate the frequency dependence of the storage modulus and the loss modulus of VE dampers. 
Recently, more advanced models of VE dampers have also been used when considering the 
dynamic analysis of structures with VE dampers. The dynamics of structures with VE damp-
ers modeled by means of the generalized rheological models is very rarely discussed in the 
literature. These models are used in papers [4, 16] only. In papers [3, 5, 14] a three-parameter 
rheological model with the fractional-derivative model is used to model the VE dampers’ be-
havior. Moreover, rational polynomial approximation modeling is used in paper [17] for an 
analysis of structures with VE dampers.  

In this paper, frame structures equipped with VE dampers are considered. The frame is 
treated as a linear system while the generalized Kelvin model and the generalized Maxwell 
model are used to accurately describe the dynamic behaviour of VE dampers. The considered 
generalized models of VE dampers contain more parameters than the rheological models with 
the fractional derivative but lead to traditional differential equations of motion. The finite ele-
ment method is adopted to write the equation of motion of the considered system in terms of 
both physical and state nodal variables. In particular, the solution of motion equation of a 
whole system in the frequency domain is considered and the dynamic properties of structure 
with VE dampers are determined. The frequencies of vibration, the non-dimensional damping 
ratios together with the corresponding eigenvectors are determined as a solution to the appro-
priately defined linear eigenvalue problem. Moreover, the frequency response functions are 
also determined. The results of typical calculations are presented and discussed. 

Up to now, the dynamic characteristics of structures with VE dampers modeled by means 
of the generalized rheological models have not been considered or discussed in the available 
literature. Moreover, it was found that the VE damper model is not unique, i.e., both of the 
considered models can be used for modeling accurately the real damper for a sufficiently 
great number of model parameters.  

2 THE GENERALIZED RHEOLOGICAL MODELS OF VE DAMPERS 

The frequency dependence of the properties of VE dampers can be captured using general-
ized rheological models. The generalized Kelvin model and the generalized Maxwell model, 
as shown in Figs. 1 and 2, are used for modeling the VE dampers in this paper. The general-
ized Kelvin model is built of a spring and a set of the m  Kelvin elements connected in series 
(see Fig.1). The Kelvin element is build of a spring and a dashpot connected in parallel. The 
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generalized Maxwell model is built of the spring and a set of the m  Maxwell elements con-
nected in parallel (see Fig.2). The Maxwell element is the classical Maxwell rheological 
model, i.e., the spring and dashpot connected in series. As shown in [18], the frequency de-
pendence of the properties of VE dampers can be accurately taken into account using the gen-
eralized rheological models. 
 
 
 
 
 
 

 
 

Figure 1: A schematic of the generalized Kelvin model 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: A schematic of the generalized Maxwell model 

The concept of superelement and the concept of so-called internal variables have been used 
in describing both models. The dynamic behavior of the Kelvin damper can be described by 
means of the following equations: 

      ))(~)(~()( 11,00 tqtqktu w −=  ,         (1) 

      ))(~)(~())(~)(~()( ,1,,1, tqtqctqtqktu iwiwiiwiwii
&& −+−= ++  ,     (2) 

      )~)(~()~)(~()( ,3,3 mwmmwmm qtqcqtqktu && −+−=  ,      (3) 

where )(tui  is the force in the i-th element of the model ( mi ,..,1,0= ), ik  and ic  are the 

spring stiffness and the damping factor of the dashpot of the i-th element of the model, respec-
tively, and symbols )(~

1 tq  and )(~
3 tq  denote the external nodes displacements given in the lo-

cal coordinate system (compare Fig.1). Moreover, the dot denotes differentiation with respect 
to time t  and the symbol )(~

, tq iw  denotes the internal variable ( mi ,..,1= ).  
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After introducing the vector of external reactions ))(
~

 ),(
~

 ),(
~

 ),(
~

()(
~

4321 tRtRtRtRcoltz =R  

(see Figure 1) and utilizing the equilibrium conditions of the external nodes: )()(
~

01 tutR −= , 

0)(
~

2 =tR , )()(
~

1 tutR m=  and 0)(
~

4 =tR  we can write the following matrix equation: 

     )(~~
)(~~

)(~~
)(~~

)(
~

ttttt wzwzzzwzwzzzz qCqCqKqKR && +++=  ,      (4) 

where ))(~ ),(~ ),(~ ),(~()(~
4321 tqtqtqtqcoltz =q , ))(~ ),......,(~()(~

,1, tqtqcolt mwww =q . The matrices 

zzK
~

, zwK
~

, zzC
~

 and zwC
~

 are defined in Appendix A. 

Moreover, the equilibrium conditions of the internal nodes, i.e., 0)()( 11 =−− tutui  for 

mi ,..,1=  lead to the following matrix equation: 

  0qCqCqKqK =+++ )(~~
)(~~

)(~~
)(~~

tttt wwwzwzwwwzwz
&&  ,       (5) 

where T
zwwz KK

~~ = , T
zwwz CC

~~ =  and the matrices wwK
~

, wwC
~

 are defined in Appendix A. 

The equation of motion of the Kelvin model of a VE damper written in the local coordinate 
system can be finally presented in the form: 
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Transforming nodal parameters to the global coordinate system, the usual transformation 
of displacements of the external nodes of the damper is used while the internal variables of 
the damper are still defined in the local coordinate system. This means that the transformation 
matrix is: 
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αcos=c , αsin=s , α  is the angle between the global and local coordinate systems and I  is 
the )( mm×  identity matrix.  

In the global coordinate system the generalized Kelvin model equation has the form: 

    )()()( ttt ddddd qCqKR &+=  ,      (10) 

where 

    dd
T
dzd tcolt TRT0RR

~
)  ),(()( ==  ,         ))( ),( ),( ),(()( 4321 tRtRtRtRcoltz =R  , 

    dd
T
dwwzd tttcolt TqTqqqq ~))(~)(  ),(()( ===  ,   ))( ),( ),( ),(()( 4321 tqtqtqtqcoltz =q  ,      (11) 
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are the vector of nodal reactions and the vector of nodal parameters, respectively, in the global 
coordinate system. The explicit forms of matrices dK  and dC  are given in Appendix A. 

The dynamic behavior of the Maxwell damper could be described in a similar way. Using 
the internal variables defined in Fig. 2, the following equations can be written: 

    ))(~)(~()( 1300 tqtqktu −=  ,      (12) 

    ))(~)(~()( 1, tqtqktu iwiis −=  ,      (13) 

    ))(~)(~()( ,3 tqtqctu iwiid
&& −=  ,      (14) 

for the spring element and for the i-th Maxwell element ( mi ,..,1= ), respectively. The sym-

bols )(0 tu , )(tuis  and )(tuid  in the above relationships denote the force in the spring element, 

the force in the spring of the i-th Maxwell element, and the force in the dashpot of the i-th 
Maxwell element, respectively. 

The nodal reactions in the local coordinate system are:  
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After introducing relationships (12) – (14) into Eqns (15) we obtain again Eqn (4) though 
its matrices are defined in Appendix B. Moreover, in the global coordinate system, Eqn (10) 
is also valid with the matrices dK  and dC  given in Appendix B.  

Many particular rheological models described in the literature can be obtained by varying 
the number of elements in the generalized models mentioned above.  

However, the simple Kelvin and Maxwell models, which contain only one Kelvin or 
Maxwell element, respectively, are not particular instances of the generalized models being 
discussed because the spring element with stiffness 0k  is not present. For the reader’s conven-

ience, a brief description of the above-mentioned simple models is also presented. In the ma-
trix notation the equation of both models could be written in the form of Eqns (6) and (10). 
The matrices and vectors appearing in these equations are defined in Appendix C.  

3 EQUATION OF MOTION AND DYNAMIC CHARACTERISTICS OF 
STRUCTURES WITH VE DAMPERS 

Planar frame structures with VE dampers are modeled using the finite element method. 
A typical two-node bar element with six nodal parameters is used to describe the structure 
treated as the elastic system. The mass and stiffness matrices together with the vector of nodal 
forces of the element can be found in many books. The equation of motion of the structure 
with VE dampers modeled using the generalized rheological models can be written in the fol-
lowing form: 

  )()()()()()( tttttt sdsdsssdsdssssss pqKqKqCqCqM =++++ &&&&  ,   (16) 

          0qKqKqCqC =+++ )()()()( tttt dddsdsdddsds &&  ,   (17) 

where the symbols ssM , ssC , T
dssd CC = , ddC , ssK , T

dssd KK =  and ddK  denote the mass, 

damping, and stiffness matrices of the system (i.e., structure with dampers), respectively, 
written in the global coordinate system. The dimension of matrices ssM , )()( d

ss
s

ssss CCC +=  
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and )()( d
ss

s
ssss KKK +=  is ( nn × ). The matrices ssM , )(s

ssC  and )(s
ssK  describe the inertia, 

damping, and elastic properties of the structure without dampers, while the matrices )(d
ssC , 

)(d
ssK  and the ( rn × ) matrices T

dssd CC = , T
dssd KK =  represent the effect of the coupling of 

dampers with the structure. The (rr × ) matrices ddC  and ddK  describe the damping and 

stiffness properties of dampers with braces, respectively. Moreover, )(tsq , )(tdq  and )(tsp  

are the global vectors of nodal generalized displacements, internal variables and nodal excita-
tion forces, respectively. The concept of proportional damping is used to model the damping 
properties of the structure, i.e.: )()(   s

ssss
s

ss KMC κα +=  where α  and κ  are proportionality fac-

tors. 
The equation of motion written in terms of state variables will also be useful. After intro-

ducing the following state vector ))(  ),(  ),(()( tttcolt dss qqqx &=  and adding the equation: 

    0qMqM =− )()( tt ssssss && ,      (18) 

to the system of Eqns (16) and (17) the following state equation could be written 

    )()()( ttt sBxxA =+&  ,       (19) 

where 
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Please note that the matrices A  and B  are symmetrical and the matrix B  is non-singular.  
The solution to the homogenous state equation, i.e., when 0s =)(t , is assumed in the form: 

     )exp( )( stt ax =  .      (21) 

Introducing (21) into the state equation (19) we obtain the following eigenvalue problem: 

     0aBA =+  )(s  .      (22) 

The linear eigenvalue problem (22) must be solved to determine the ( rn +2 ) eigenvalues 

is  and eigenvectors ia . In the case of an undercritically damped structure the n2  eigenvalues 

(eigenvectors) are complex and conjugate numbers (vectors) while the remaining r  eigenval-
ues (eigenvectors) are real numbers (vectors). 

The dynamic behavior of a frame with VE dampers is characterized by the natural frequen-
cies iω  and the non-dimensional damping parametersiγ . The above-mentioned quantities are 

defined as:  

                                           222
iii ηµω +=  ,   iii ωµγ /−=  ,     (23) 

where )Re( ii s=µ , )Im( ii s=η . The formulae (23) refer to complex eigenvalues only.  

The third dynamic characteristic of the considered system are the frequency response func-
tions. Before determination of these functions it is useful to rewrite equations of motion (16) 
and (17) in the form of the following one matrix equation: 

   )()()()( tttt pKqqCqM =++ &&&  ,      (24) 

where 
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To determine the frequency response functions the steady state harmonic responses of the 
system are considered. If the excitation forces vary harmonically in time, i.e., when  

    )iexp()( tt λPp =  ,       (26) 

then the steady state response of the system under consideration can be described by: 

    )iexp()( tt λQq =  ,       (27) 

where 1i −=  is an imaginary unit. 
After substituting Eqns (26) and (26) into Eqn (24) the following standard formula de-

scribes the matrix of the frequency response functions: 

    12 )i ()( −++−= KCMH λλλ  .     (28) 

If the structure with dampers modeled by the simple Maxwell model is considered, then all 
of the relationships presented above in this section are valid provided that the matrices given 
in Appendix C are used to generate the global matrices appearing in Eqns (16) and (17). 

The vector of internal variables )(tdq  does not exist in the case of a structure with damp-

ers modeled by the simple Kelvin model, and the motion equation (16) takes the form: 

  )()( )()( )()( tttt ssddsssddsssss pqKKqCCqM =++++ &&&  .    (29) 

The matrices ddC  and ddK  appearing in (29) are built from the matrices dC  and dK , re-

spectively, given by formulae (C.4).  
The state equation has the form of Equation (19) where, now  
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Moreover, the matrix of frequency response functions must be defined as  

   [ ] 12 )(i )( 
−++++−= ddssddssss KKCCMH λλλ  .    (31) 

4 RESULTS OF TYPICAL CALCULATIONS 

4.1 Description of a representative structure and VE dampers 

An eight-storey RC frame with three-bays is selected to determine the dynamic characteris-
tics of a structure with dampers. The frame is designed according to the EC8 Part 1 for class B 
soils. The height of the columns is m  0.3 , the span of the beams is m  0.5  and Young’s 
modulus for concrete is GPa  0.31 . The dimensions of the cross-section of the structural ele-
ments are presented in Table 1 while the unit masses of the frame elements are given in Table 
2.  

Table 3 shows the natural frequencies of vibration of the frame without dampers. The dy-
namic properties of the structure are obtained by way of a two-dimensional analysis of the 
frame. Any axial deformations and internal damping of the structure are neglected. 

The dampers are attached in the middle bay on all floors of the structure. The dampers are 
modeled using the following rheological models: i) the simple Kelvin model; ii) the simple 
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Maxwell model; iii) the generalized Kelvin model with seven parameters, and iv) the general-
ized Maxwell model also with seven parameters. 

 

Storey level Lateral column 

[cm] 

Central column 

[cm] 

Beams 

[cm] 

7, 8 35×35 40×40 30×40 

5, 6 40×40 45×45 30×45 

3, 4 45×45 53×53 30×50 

1, 2 50×50 60×60 30×50 

 

Table 1: Dimensions of eight-storey frame elements 

 

Storey level 
Unit lateral 

column mass 

[kg/m] 

Unit central 
column mass 

[kg/m] 

Unit beam 
mass 

[kg/m] 

7, 8 306.2 400.0 15000.0 

5, 6 400.0 506.2 15000.0 

3, 4 506.2 702.2 15000.0 

1, 2 625.0 900.0 15000.0 

 

Table 2: Unit mass of eight-storey frame elements 

 

Natural frequencies [rad/sec] 

3.1311 8.6582 15.4268 23.7804 

31.2647 40.1148 42.1251 51.1550 

52.3598 57.6067 65.6532 69.9862 

 

Table 3: Natural frequencies of frame without dampers 

Data from the real experiment are not adopted in this paper. Instead, the storage and loss 
modulus of dampers are calculated from the formulae: 

 )2/cos()(' απλλ αckK +=  ,  )2/sin()(" απλλ αcK =  ,    (32) 
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which are the analytical formulae of the fractional-derivative Kelvin model of dampers. The 
chosen parameters of the fractional-derivative Kelvin model are: 63.0=α , 

mNk /104.0 6×=  and mNc /sec106.3 6 α×= . The value of the parameter α  is similar to 
the one used in papers [1, 4], but the original values of k  and c  are divided by 2.0.  

In paper [1] the parameters of generalized models are obtained by minimizing the mean 
square norm of the differences between the targeted modules and the analytical modules of 
the considered model. The parameters of the generalized Kelvin model and the generalized 
Maxwell model, both with seven parameters and used in this paper, are given in Table 4.  

 

Stiffness  

[ ]mN / )10( 6×  

Damping factor  

[ ]mN sec/ )10( 6×  

 Kelvin model Maxwell model  Kelvin model Maxwell model 

0k  57.650 0.1065   –   –  

1k  18.350 33.385 
1c  2.729 1.478 

2k  6.160 3.310 
2c  6.190 1.732 

3k  0.5545 1.443 
3c  8.675 8.305 

 

Table 4: Parameters of generalized Kelvin and Maxwell models 

The energy dissipated by the damper was calculated assuming that the amplitude of a har-
monically varying vibration of the damper is equal to m 01.0  in all of the considered cases. 
From this calculation, it can be concluded that the loss modulus and dissipation energy of the 
fractional-derivative Kelvin model and both generalized models are approximately equal in 
the range 0 – 15.0 rad/sec of excitation frequency. This range of frequency covers the range of 
the first three natural frequencies of vibration of the structure considered. 

The values of the parameters of the simple Kelvin model are: mNk / 1074637.0 7×= , 

mNc sec/ 10134420.0 7×=  and the values of the parameters of the simple Maxwell model are: 

mNk / 1090392.1 7×= and mNc sec/ 10338669.0 7×= . These parameters are calculated by 
minimizing the mean square norm of difference between the target modules, given by (32), 
and the analytical modules of the respective model. However, the dissipation energy of simple 
models and the dissipation energy of the fractional-derivative model are not equal and, as ex-
pected, the differences are significant, especially for the simple Maxwell model. 

Chevron braces are used to connect the dampers with the structure. The braces are made of 
HEB 200 stainless steel profiles of which the parameters are: N 1060105.1 9×=EA  and 

27 Nm 101685.1 ×=EJ . 

4.2 Comparison of dynamic characteristics of considered frame 

Results of the solution to the eigenvalue problems are presented in Tables 5 – 10. The real 
and the complex conjugate numbers are obtained as eigenvalues. In Table 5 the values of the 



R. Lewandowski and A. Bartkowiak 

 10 

first three complex conjugate eigenvalues are given for all of the considered models (the two 
parameter model denotes the simple Kelvin or Maxwell model).  

 

Kelvin model of damper with Maxwell model of damper with 

7 parameters 2 parameters 7 parameters 2 parameters 

-0.18461 ± i 3.30499 -0.1224 ± i 3.3754 -0.18260 ± i 3.30439 -0.25113 ± i 3.31731 

-0.99448 ± i 9.39577 -0.9846 ± i 9.28452 -1.01395 ± i 9.50962 -0.58872 ± i 9.83667 

-2.09561 ± i 16.8189 -2.4740 ± i 16.0635 -1.76745 ± i 17.2242 -0.56505 ± i 17.0933 

 

Table 5: The first three complex conjugate eigenvalues of frame with dampers 

 

Kelvin model of damper with  

7 parameters ]sec [ 1−  

Maxwell model of damper with    

7 parameters ]sec [ 1−  

-0.377771 -2.90147   -0.166298 -1.83572 

-0.382183 -2.93738 -0.167949 -1.85359 

-0.383780 -2.95781 -0.168588 -1.86274 

-0.386515 -3.01417 -0.169621 -1.89241 

-0.389423 -27.3841 -0.170717 -15.3707 

-0.391331 -28.5853 -0.171435 -16.1435 

-0.392254 -29.2224 -0.171781 -16.6836 

-0.395517 -30.4773 -0.173008 -17.2797 

-2.72596 -31.9943 -1.73882 -17.9245 

-2.80627 -33.8003 -1.78531 -18.8592 

-2.84271 -35.3870 -1.78985 -20.0361 

-2.85854 -36.0392 -1.80968 -20.5792 

 

Table 6: Real eigenvalues of frame with dampers 

Given in Tables 6 and 7 are all real eigenvalues obtained for all of the models considered. 
The real eigenvalues for both of the generalized models could be divided into three groups, 
each with eight elements. The values of elements in one group are of the same order as the 
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eigenvalues of the eigenproblem obtained for one separate damper. For the generalized Kelvin 
model of damper with seven parameters the above-mentioned problem has the following form: 
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kkk
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 ,  (33) 

from which we obtain: 1
1 sec 3975.0 −−=s , 1

2 sec 0518.3 −−=s  and 1
3 sec 418.41 −−=s . In the 

case of the generalized Maxwell model the equations of the above-mentioned eigenproblem 
are uncoupled and the real eigenvalues are approximately equal to the inverse of the relaxa-
tion time of the Maxwell element (with a minus sign), i.e., in the case under consideration, 

1
111 sec 588.22/ −−=−= cks , 1

2 sec 911.1 −−=s  and 1
3 sec 1738.0 −−=s . A similar remark is true 

for the real eigenvalues of the frame with dampers modeled using the simple Kelvin model 
and presented in Table 7. 

The reason why real eigenvalues exist for the frame with dampers modeled by the simple 
Kelvin model, given in Table 8, is completely different. The loss factor of the simple Kelvin 
model is a linear function of excitation frequency. This means that higher modes of vibration 
are more strongly damped, compared with lower ones, and could be overdamped, which hap-
pens in the case under consideration where eight modes of vibration are overcritically damped. 
In other cases, all modes are undercritically damped. It is a qualitative difference, compared 
with other damper models.  
 

Maxwell model of damper with    

2 parameters ]sec [ 1−  

-3.75157 -4.57767 

-4.09211 -4.79722 

-4.27776 -4.98507 

-4.53600 -5.32095 

 

Table 7: Real eigenvalues for frame with dampers modeled by the simple Maxwell model 

 

Kelvin model of damper with 2 parameters ]sec [ 1−  

-231.120 -254.940 -14840.1 -14847.5 

-240.435 -258.708 -14845.1 -14848.7 

-245.480 -261.561 -14846.0 -14849.6 

-250.975 -262.479 -14846.9 -14855.5 

 

Table 8: Real eigenvalues for frame with dampers modeled by the simple Kelvin model 
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The first three natural frequencies of the frame with dampers modeled using different 
models are presented in Table 9. As is easily verified, the damper model does not significantly 
change the first three natural frequencies of the frame. The maximal difference is 6.1%. How-
ever, as is obvious from Table 10, the influence of the damper model on the non-dimensional 
damping ratios is substantial because the maximal difference is of the order of 80%. 

 

Kelvin model of damper with Maxwell model of damper with  

Natural 

frequency 
7 parameters 

[rad/sec] 

2 parameters 

[rad/sec] 

7 parameters 

[rad/sec] 

2 parameters 

[rad/sec] 

1ω  3.31014 3.37757 3.30944 3.32681 

2ω  9.44825 9.33658 9.56352 9.85427 

3ω  16.9490 16.2529 17.3146 17.1026 

 

Table 9: The natural frequencies of frame with dampers  

 

Kelvin model of damper with Maxwell model of damper with  

Damping  

ratio 
7 parameters 2 parameters 7 parameters 2 parameters 

1γ  0.0557702 0.0362529 0.0551757 0.0754865 

2γ  0.105256 0.105455 0.106023 0.0597427 

3γ  0.123642 0.152223 0.102078 0.0330390 

 

Table 10: Non-dimensional damping ratios of frame with dampers 

A comparison of the first and second modes of vibration is shown in Figures 3. The dashed 
lines represent the shape of vibration of frame without dampers while the real and imaginary 
parts of eigenvector for the frame with dampers are shown by the solid line and the solid line 
with crosses, respectively. Moreover, the imaginary part of eigenvectors is multiplied by 10 in 
order to show this quantity in detail. The calculation is done for dampers modeled using the 
Kelvin model with seven parameters. It is easy to observe that the real part of both eigenvec-
tors is very similar to the respective mode of vibration of the frame without dampers. 

The frequency response functions are also calculated and one example is shown in Figures 
4 where the frequency response function corresponding to the horizontal displacement of the 
eighth storey is shown. The frequency response curve for the frame with dampers modeled 
using the generalized Kelvin model (the solid line) and the simple Kelvin model (the dashed 
line) is shown.  
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Figure 3: A comparison of modes of vibration for a frame without dampers (the dashed lines) with the real part 
of eigenvector for frame with dampers modeled by the generalized Kelvin model (the solid line). The imaginary 

part of the eigenvector is multiplied by 10 and shown by the solid line with crosses  
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Figure 4: Frequency response function of frame with dampers modeled by the generalized Kelvin model (the 
solid line) and by the simple Kelvin model (the dashed line) 

5 CONCLUSIONS  

Several models of dampers are used in this paper to describe the dynamic behaviour of 
frame structures with VE dampers. A family of generalized rheological models, including the 
very often used simple Kelvin and Maxwell models, are compared in detail. The comparison 
is made in the frequency domain for a carefully selected frame structure with VE dampers. 
The finite element method is used to derive equations of motion.  

Several conclusions can be formulated on the basis of the results of numerical analysis pre-
sented above. The most important ones are listed below. 
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• Different models are able to correctly describe the dynamic behaviour of VE dampers. 
The seven-parameter Kelvin model and the seven-parameter Maxwell model provide al-
most identical results. This conclusion is in agreement with the results presented by 
Singh and Chang [4] where the generalized Kelvin and Maxwell models are used as 
models of VE dampers. 

• The simple Kelvin and the simple Maxwell models are not able to correctly describe, in 
the frequency domain, the dynamic behavior of frames with VE dampers. In particular, 
relative differences concerning the non-dimensional damping ratios are large. 

• The linear eigenvalue problems must be solved in order to determine the dynamic charac-
teristics of the frame with VE dampers. The solution procedure for this problem is much 
simpler than the solution procedure for the nonlinear eigenvalue problem obtained when 
the fractional-derivative Kelvin model or the complex modulus model are used as the VE 
damper model. 

• There are some qualitative differences between the results obtained. For the frame with a 
fixed number of VE dampers the total number of eigenvalues and eigenvectors depends 
on the selected model of dampers and the number of parameters of the models. Both the 
real and complex eigenvalues are obtained. The number of real eigenvalues depends on 
dampers model. 
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6 APPENDIX A 

In this appendix the explicit form of the matrices used to describe the generalized Kelvin 
model of the VE damper is given. 
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7 APPENDIX B 

In this Appendix the explicit form of matrices used to describe the generalized Maxwell 
model of the VE damper is given. 
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8 APPENDIX C 

The explicit form of the vectors and matrices used to describe the simple Kelvin model of 
VE damper is: 
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The explicit form of the matrices used to describe the simple Maxwell model of VE 
damper is: 

                                           ))(~  ),(~()(~ ttcolt wzd qqq =  ,                                                         (C.5) 

                  ))(~ ),(~ ),(~ ),(~()(~
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1, tqcolt ww =q  ,                       (C.6) 
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