A NEW APPROACH FOR MULTI-MATERIAL CELLS IN CELL-CENTERED HYDRODYNAMICS

Vincent Chiravalle and Nathaniel R. Morgan

Los Alamos National Laboratory; P.O. Box 1663, Los Alamos, NM, USA; chiravle@lanl.gov

Key words: hydrodynamics, cell-centered, multi-material, Godunov, finite-volume

We present a new method of treating multi-material cells in a cell-centered hydrodynamic (CCH) formulation [1, 2] suitable for simulating compressible flows on 3D unstructured meshes and involving materials with constitutive models. At each node a multi-material, multidirectional Riemann-like problem is solved incorporating contributions from each of the cell corners adjacent to the node. While CCH methods typically use constant or linear reconstructions, we use a full quadratic polynomial to represent the material stress field in the cell, constructed using only information from face-neighboring cells. A quadratic polynomial is created for each material in the cell. There are two common approaches for reconstructing the velocity and stress fields in a multimaterial cell. The first approach reconstructs the volume-fraction average fields. The second approach reconstructs the fields for each material present in the cell. We propose a hybrid approach that combines these two approaches together. In this work, the higher-order polynomial reconstructions incorporate a discrete Mach number as a smoothness indicator [3] to reduce the reconstruction towards a piecewise constant field near discontinuities preventing artificial extrema. The accuracy and robustness of the new multi-material CCH approach is demonstrated by simulating a suite of 3D Cartesian test problems, each involving two materials on a non-conformal mesh, including the Sod, Sedov, and triple point problems for gas dynamics, as well as the Verney spherical compression problem for solid dynamics.

Acknowledgements

This work was funded by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. The Los Alamos unlimited release number is LA-UR-18-20100.

REFERENCES

- D. Burton, T. Carney, N. Morgan, S. Sambasivan, and M. Shashkov. A cell-centered Lagrangian Godunov-like method of solid dynamics. *Journal of Computers & Fluids*, 83:33–47, 2013.
- [2] D. Burton, N. Morgan, T. Carney, and M.Kenamond. Reduction of dissipation in lagrange cellcentered hydrodynamics CCH through corner gradient reconstruction CGR. *Journal of Computational Physics*, 299:229–280, 2015.
- [3] V. Chiravalle and N. Morgan. A 3D finite element ALE method using an approximate Riemann solution. International Journal for Numerical Methods in Fluids, 83:642–663, 2016.