Invariance of Mechanical Quantities Regarding Eigenvector Functions Obtained from Computational Stability Analysis of Structures

Herbert A. Mang

Institute for Mechanics of Materials and Structures, Vienna University of Technology, Karlsplatz 13/202, 1040 Vienna, Austria, herbert.mang@tuwien.ac.at College of Civil Engineering, Tongji University, Siping Road 1239, Shanghai, China

Key Words: *Structural stability, eigenvector functions, invariance of mechanical quantities, Finite Element Method, dimensional reduction.*

It is shown that the absolute value v_0 of the initial vector velocity $(\mathbf{r}'_1)_0$ and the ratio a/a_0 , where *a* is the absolute value of the vector acceleration \mathbf{r}''_1 and a_0 is its initial value, are invariant quantities regarding eigenvector functions $\mathbf{r}_1(t)$. $(\mathbf{r}'_1 \text{ and } \mathbf{r}''_1$ denote the first and the second derivative of \mathbf{r}_1 with respect to the pseudo time *t*, with $dt = (d\mathbf{q} \cdot d\mathbf{q})^{\frac{1}{2}}$, where $d\mathbf{q}$ is a differential of the nodal displacement vector, \mathbf{q} , in the framework of the Finite Element Methode (FEM).) The functions $\mathbf{r}_1(t)$ represent special eigenvector functions, obtained from linear eigenvalue problems, with the tangent stiffness matrix $\tilde{\mathbf{K}}_T(t)$ and an arbitrary real symmetric matrix **B** as the coefficient matrices. At the stability limit, these functions are related to the null eigenvalue.

The proof of the asserted invariance is based on the reduction of N-dimensional normalized eigenvectors to 3-dimensional eigenvectors, the vertices of which represent curves on an octant of the unit sphere. The terms "vector velocity" and "vector acceleration" refer to a fictitious particle, moving with variable speed on these surface curves. Thus, by "invariance of mechanical quantities regarding eigenvector functions" the independence of v_0 und a/a_0 of the matrix **B** is meant. The mechanical background of these invariances is the invariance of $(U - U_M)/U = 2v_0(a/a_0)$, where U denotes the strain energy and U_M stands for its membrane part. The relation between the kinematic quantity $2v_0(a/a_0)$ and the energetic quantity $(U - U_M)/U$ was previously derived for the so-called, "consistently linearized eigenvalue problem", characterized by $\mathbf{B} = \tilde{\mathbf{K}}'_T$ [1].

REFERENCE

[1] H.A. Mang, Evolution and verification of a kinematic hypothesis for splitting of the strain energy. *Comput. Methods Appl. Engrg.*, Vol. **324**, pp. 74-109, 2017.