
Unsupervised Machine Learning Based on Non-Negative Tensor 
Factorization 

Velimir V. Vesselinov, Los Alamos National Laboratory, USA 
Daniel O'Malley, Los Alamos National Laboratory, USA 

Boian S. Alexandrov, Los Alamos National Laboratory, USA 
 

Key words: feature extraction; species mixing 

Introduction 
Unsupervised machine learning (ML) methods are powerful tools for data analyses to extract essential features hidden 
in data. The integration of large datasets, powerful computational capabilities, and affordable data storage has resulted 
in the widespread use of ML in science, technology, and industry. Here we present applications of ML to characterize 
physical processes related reactive transport in porous media. Our ML method is based on Sparse Non-Negative Tensor 
Factorization (SNTF) and is applied to reveal the temporal and spatial features in reactants and product concentrations. 

Methodology 
The factorization of tensor 𝐗 is typically performed by minimization of the norm "

#
| 𝐗 − 	𝐖⨂𝟏𝐀𝟏 …	⨂𝐍𝐀𝐍 |-#, where 

W is a low-rank tensor (with a rank lower than the rank of 𝐗), 𝐀𝟏, 𝐀𝟐 …	𝐀𝐍 are mixing factors, and 
𝐖⨂𝟏𝐀𝟏 …	⨂𝐍𝐀𝐍 	≡ 𝐟(α, β, … ) is a factorization model (e.g., Candecomp/Parafac (CP), Tucker, etc.) decomposing 
the tensor X (Fig.1). Note that different models will have different number of free parameters: α, β, …. The 
reconstruction of X is 𝐗 = 𝐟(α, β, … ) + 𝛆, where 𝛆 is a tensor of residual 
errors. Some of the factorization models can theoretically lead to unique 
solutions under specific, albeit rarely satisfied, noiseless conditions1-3. 
When these conditions are not satisfied, additional constraints can assist 
the factorization. A popular approach is to add nonnegative constraints 
leading to Nonnegative Tensor Factorization (NTF)4. Nonnegativity 
enforces parts-based representation of the original data which also allows 
the NTF results for W and 𝐀𝟏, 𝐀𝟐 …	𝐀𝐍 to be easily interrelated4. The 
NTF results frequently represent hidden features extracted from the 
original data. The NTF method applied here (SNTF) allows also for 
sparsity constraints in the minimization process5,6; in this way, the 
solutions for W and 𝐀𝟏, 𝐀𝟐 …	𝐀𝐍 (Fig.1) would have as many zero 
entries as possible while reproducing 𝐗 with sufficient accuracy. 

Data & Results 
LANL site: Here we explore the spatial and temporal evolution of groundwater contaminants at the LANL site7. A 
small subset of the site data is shown in Fig.2. The data describe site physical/biogeochemical governing processes 
that are challenging to conceptualize and simulate with physics models8,9. We apply SNTF to analyze the data and 
extract groundwater types and contaminant sources manifested in the data. The obtained results are presented in Fig.2. 

	
Fig.1: A) Matrix factorization; B & C) 
Example tensor factorization models. 

	

Fig.2: Left: A subset of the tensorial LANL site dataset; full dataset includes >100 
physical/ biogeochemical components observed at >100 wells over 50 years. 
Right: Map of identified mixed contaminant plumes (shown with different colors). 



Bimolecular reactions: High-resolution datasets (with dimensions in X, Y and Time: 81 x 81 x 1000) are generated by 
solving anisotropic reaction-diffusion equations using a non-negative finite element formulation for different input 
parameters for perturbed vortex-based velocity fields. The input parameters are (1) a time-scale associated with 
flipping of the velocity, (2) a spatial-scale controlling small/large vortex structures of velocity, (3) a perturbation 
parameter of the vortex-based velocity, (4) anisotropic dispersion strength/contrast, and (5) molecular diffusion. The 
simulated reaction is a fast, irreversible bimolecular reaction A + B = C, where two species A and B react to form 
species C. More than 2000 model runs are performed varying the input model parameters. Without prior knowledge 
of the simulated processes, we apply SNTF to analyze all these simulation datasets to extract meaningful 
deconstruction of model outputs to discriminate between different physical processes impacting the reactants, their 
mixing, and the spatial distribution of the product C. The ML analysis allowed us to identify a series of additive 
temporal and spatial features that characterize mixing behavior. These features have physical meaning. An example 
result is presented in Fig.3. Here the model predicted concentration of C (left) are deconstructed into two temporal 
components (center and right) using STNF. The first temporal component (Fig.3) influence of anisotropy at the late 
stages of mixing. It defines how deviant is the anisotropic system with respect to that of pure isotropic diffusion case. 
It also describes how different is the anisotropic system from "the algebraic law of chemical kinetics"10 at longer times. 
The second temporal component (Fig.3) is related to Finite-Time Lyapunov Exponent (FTLE). This component defines 
how fast the reactants are decaying over time. The average of C concentrations represented by the first component 
decline with a slope that gives the FTLE, which is also related to the exponential concentration decay parameter. 

Conclusions 
Our analyses demonstrate the applicability of 
our SNTF ML approach for identification of 
features in large datasets without prior 
knowledge about the underlying processes 
and mechanisms. 
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Fig.2: Example deconstruction of the model predicted concentrations of 
C at dimensionless times 0.02 (top row) and 0.15 (bottom row). The 
model predictions (left) is decomposed into two temporal components 
(center and right) which when added approximately reproduce the 
model output. The core tensor W in this Tucker-3 reconstruction has 
dimensions (3 x 8 x 9). 


