Application of FR/CPR Method on Boundary Layer Transition

Yifei Xue^{1*}, Song Fu²

 ¹ School of Aerospace Engineering, Tsinghua University, Beijing 100084, China, xueyf14@mails.tsinghua.edu.cn
² School of Aerospace Engineering, Tsinghua University, Beijing 100084, China, fs-dem@tsinghua.edu.cn

Key Words: FR/CPR Method, Transition, Forward-facing Step.

In this paper, both the whole transition process on a flat plate and the flow passing a single forward-facing step in a boundary layer are investigated with a developed FR/CPR method^[1,2], which can obtain a relatively high accuracy considering efficiency. For the flat plate transition, a Blasius laminar similarity solution is included at the inlet. The free stream Mach number is $M = U_{\infty}/c = 0.2$ and the Reynolds number based on the distance from the leading edge is $\text{Re}_x = 10^5$. One disturbance strip is adopted to trigger a K-type transition with a shape like TS wave.^[3] Typical transition processes including the TS wave, λ vortex, and the vortex ring are observed. The process of breaking down and the development of the turbulent spot are also investigated. In contrast, if a forward-facing step exists during the developing process of the disturbances, the streamwise vorticity is amplified rapidly after the step and induces an earlier transition compared with the flow on a flat plate.

REFERENCES

- [1] H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. *AIAA paper*, 4079, 2007
- [2] T. Haga, H. Gao and Z. J. Wang, A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids, *Math. Model. Nat. Phenom.*, V6, 03, pp.28-56, 2011.
- [3] T. Sayadi, C.W. Hamman and P. Moin, Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. *Journal of Fluid Mechanics*, 724, pp.480-509, 2013