## QUANTIFYING THE IMPACT OF FOCUSED ULTRASOUND INDUCED BLOOD-TUMOUR BARRIER DISRUPTION ON ANTICANCER AGENT TRANSPORT

## Miguel O. Bernabeu\*1, Yutong Guo<sup>2</sup> and Costas D. Arvanitis<sup>2</sup>

<sup>1</sup> Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom, <u>miguel.bernabeu@ed.ac.uk</u>

<sup>2</sup> School of Mechanical Engineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA, <u>yutongg@gatech.edu</u>, <u>costas.arvanitis@gatech.edu</u>

## Key Words: Cancer Modelling, Drug Transport, Multiscale Problems, Parameter Fitting.

The blood-brain and blood-tumour barriers (BBB and BTB) constitute major obstacles to the transport of therapeutics in brain tumours [1]. In recent years, increased efforts have focused on identifying strategies to improve the delivery of therapeutics to them [2]. Mathematical modelling is an important tool for elucidating the mechanisms governing drug pharmacokinetics (PK) [3]. However, methods for proper integration of mathematical models and experimental data capable of quantifying both agent- and cell-line-specific parameters are limited. Here, we quantified the impact of focused ultrasound (FUS) therapy on the transport of doxorubicin (DOX) and ado-trastuzumab emtansine (T-DM1) across the BTB in an animal model of brain metastasis with attention to the effect of structural heterogeneity on transport.

A novel procedure was devised to parameterise PK models (reaction-convection-diffusion in a tumour cord) with experimentally measured drug PK for both agents. For DOX, only the vessel effective diffusion coefficient (4.3-fold increase, p=0.002) and the hydraulic conductivity (4.5-fold increase, p=0.006) were significantly increased after FUS-BTB disruption. The interstitial Peclet number increased from (Mean  $\pm$  SEM) Pe<sub>non-FUS</sub> =  $1.01 \times 10^{-1} \pm 2.75 \times 10^{-2}$  to Pe<sub>FUS</sub> =  $22.15 \pm 15.45$  after treatment, providing quantitative confirmation of the shift from diffusive- to convective-dominated drug transport. For T-DM1, only the hydraulic conductivity (2.7-fold increase, p=0.003) was significantly increased post treatment.

To study the influence of tumour structural heterogeneity on drug transport after FUS-BTB disruption we employed a percolation model [3] parameterised with the previous agent- and cell-line-specific model parameters. In the FUS-treated group, apart from significantly higher drug penetration and uptake, we observed lower spatial drug gradients. The degree of perfusion in different parts of the network had a substantial impact on interstitial drug PK. Most notably, at low perfusion vessels, T-DM1 had very low extravasation (convection-dominated transport), whereas DOX had very high extravasation (diffusion-dominated).

## REFERENCES

- [1] Banks WA (2016) From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. *Nat. Rev. Drug Discov.* 15:275–292.
- [2] Askoxylakis V, *et al.* (2017) Emerging strategies for delivering antiangiogenic therapies to primary and metastatic brain tumors. Adv Drug Deliv Rev 119:159–174
- [3] Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664.