MULTI-SCALE ANALYSIS OF MARTENSITIC TRANSFORMATIONS IN TRIP-ASSISTED MULTI-PHASE ALLOYS

D. de Bortoli^{1,2,†,*}, M. Vieira de Carvalho^{2,‡} and F.M. Andrade Pires^{2,§}

¹ INEGI, University of Porto - Portugal, http://www.inegi.pt
² University of Porto - Portugal, http://fe.up.pt
[†] ddbortoli@fe.up.pt, [‡] mvcarvalho@fe.up.pt [§] fpires@fe.up.pt

Keywords: Multi-phase Alloys, Crystal Plasticity, Martensitic Transformations, Multiscale Modelling, Transformation-induced Plasticity

Many technologically-relevant multi-phase alloys display a combination of high yield strength and elongation at failure, stemming from a variety of deformation mechanisms acting at the material's microstructure – namely, slip plasticity and martensitic phase transitions. Well-established examples of such materials include TRIP (*transformation-induced plasticity*) steels, who undergo *mechanically-induced* martensitic transformations that play a key role in the observed mechanical response.

The modelling of their mechanical behaviour presents a number of challenges due to aforementioned complexity of interdependent microstructural mechanisms over multiple phases. Many constitutive models have been proposed accounting for the major features of their macroscopic response; however, these often require the extensive experimental calibration of numerous parameters. In this context, multi-scale models fit naturally due to their ability to directly capture the relevant fine-scale crystalline features.

In this contribution, a fully-implicit FE^2 multi-scale approach is employed, based on continuum constitutive models at the crystalline micro-scale. Slip in FCC and BCC lattices is described using classical crystal plasticity; for the latter, non-Schmid effects are also taken into account. Martensitic transformations are modelled using a recently formulated extension of Patel and Cohen's [1] transformation criteria, extended to largestrains and general stress states. The model considers the simultaneous evolution of austenite slip plasticity and martensitic transformations at a given material point, allowing the description of the so-called *strain-induced* transformation regime.

Application examples are presented using both RVE homogenisation and fully-coupled multi-scale analyses, where the models are calibrated using data from micro-pillar experiments performed on the individual phases of a TRIP steel microstructure. Results show that the employed constitutive models successfully capture the experimentally-observed effect of the martensite transition in these alloys, causing an initial softening in their overall response, followed by significant hardening once a substantial amount of martensite is formed.

REFERENCES

 J.R. Patel and M. Cohen, Criterion for the action of applied stress in the martensitic transformation. Acta Metall., Vol. 1, Issue 5, pp. 531–538, 1953.