A level-set approach for a multiscale cancer invasion model

Thomas Carraro ${ }^{1 *}$, Sven E. Wetterauer ${ }^{1}$, Anna V. Ponce Bobadilla ${ }^{1}$, Françoise Kemp ${ }^{2}$ and Dumitru Trucu ${ }^{3}$
${ }^{1}$ Institute for Applied Mathematics, Heidelberg University, INF 205, 69120 Heidelberg, Germany, thomas.carraro@iwr.uni-heidelberg.de
${ }^{2}$ Department of Mathematics, Trier University, 54286 Trier, Germany
${ }^{3}$ Department of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland, UK, trucu@maths.dundee.ac.uk

Keywords: Mathematical Biology, Multiscale Model, Numerical Methods, Finite Element Method, Adaptive Grid, Cut Cells

We present a multiscale model for tumor invasion and its implementation with adaptive finite elements using cut cells in a two dimensional domain. In particular, we show a new formulation, based on the level-set method, for the model presented in [1]. The macroscopic dynamics determines the distribution of cancer cell c and extracellular matrix v in the domain $\Omega(t)$, see equations (1-2). The time-dependent domain of the cancer region is modelled as the zero-set of an initial level-set function ϕ that is transported according to a computed velocity field, see equation (3). The interface dynamics is determined by the solution of a microscopic quantity m (distribution of matrix degrading enzymes) at the boundary of the cancer region, see equation (4). We show numerical results and discuss possible extension of the model.
Macroscopic model component:

$$
\begin{array}{ll}
\frac{\partial c}{\partial t}=D_{1} \Delta c-\eta \nabla \cdot(c \nabla v)+\mu_{1} c(1-c-v) & \text { in } \Omega(t) \times[0, T] \\
\frac{\partial v}{\partial t}=-\alpha c v+\mu_{2}(1-c-v) & \text { in } \Omega(t) \times[0, T] \tag{2}
\end{array}
$$

Transport of domain boundary:

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+v(m) \cdot \nabla \phi=0, \quad \text { in } \Omega^{\prime} \times(0, T] . \tag{3}
\end{equation*}
$$

Microscopic model component:

$$
\begin{equation*}
\frac{\partial m}{\partial t}\left(y, t^{\prime}\right)=D_{2} \Delta m\left(y, t^{\prime}\right)+F_{x}(c) \quad\left(y, t^{\prime}\right) \text { in } \epsilon Y \times\left[0, T^{\prime}\right] \tag{4}
\end{equation*}
$$

REFERENCES

[1] D. Trucu, P. Lin, M. A. Chaplain, and Y. Wang. A multiscale moving boundary model arising in cancer invasion. Multiscale Modeling 63 Simulation, 11(1):309-335, 2013.

