SIMULATION OF AERODYNAMICS AND AEROACOUSTICS OF HELICOPTER MAIN ROTOR ON UNSTRUCTURED MESHES

Ilya Abalakin, Vladimir Bobkov, Pavel Bakhvalov and Tatiana Kozubskaya

Keldysh Institute of Applied Mathematics, 4A, Miusskaya Sq., Moscow, 125047, Russia, veld13@gmail.com, http://caa.imamod.ru/

Key Words: *Helicopter, Main Rotor, Unstructured Mesh, Computational Aeroacoustics, Edge-Based Reconstruction Scheme*

A method for helicopter main-rotor simulation is presented. It allows to simulate helicopter rotor aerodynamics and acoustics on unstructured meshes. The method is based on the finite volume approach to the discretization of Navier-Stokes equations on unstructured meshes using a higher-accuracy numerical scheme.

The method includes a set of key points, namely: 1) the Navier-Stokes equations in a rotating frame of reference with different turbulence-modelling approaches and wall functions for near-field flow simulation; 2) the all-Mach Riemann solver: 3) the higher-accuracy Edgebased Reconstruction (EBR) schemes [1,2] on hybrid unstructured meshes 4) the 1A Farassat formulation of Ffowcs Williams and Hawkings acoustic analogy assuming a control surface parameterised in the fixed frame of reference [3] for far-field noise prediction.

The method is validated on Caradonna&Tung [4] two-blades rotor aerodynamics case and on Kamov shrouded rotor ("Fenestron") problem. It is applied for simulating aerodynamics and aeroacoustics of several scaled helicopter main rotors including four-blades main rotor with twisted tapered swept 5-airfoils-based blade in hovering mode and four-blades main rotor in forward-flight mode.

The work is partly supported by the Russian Foundation for Basic Research (Project 18-01-00445).

REFERENCES

- [1] I. Abalakin, P. Bakhvalov and T. Kozubskaya, Edge-based reconstruction schemes for unstructured tetrahedral meshes, *Int. J. Numer. Meth. Fluids*, Vol.**81**(6), pp. 331–356, 2016.
- [2] Pavel Bakhvalov and Tatiana Kozubskaya, Construction of Edge-Based 1-Exact Schemes for Solving the Euler Equations on Hybrid Unstructured Meshes, *Computational Mathematics and Mathematical Physics*, Vol.**57**(4), pp. 680–697, 2017.
- [3] Pavel Bakhvalov, Vladimir Bobkov and Tatiana Kozubskaya, Technology to Predict Acoustic Far-Field Disturbances in the Case of Calculations in a Rotating Reference Frame, *Mathematical Models and Computer Simulations*, Vol.9(6), pp. 717–727, 2017.
- [4] F.X. Caradonna and C. Tung. Experimental and Analytical Studies of a Model Helicopter Rotor in Hover, *NASA Technical Memorandum* 81232, 1981.