Identifying optimal meshes for high-order implicit large-eddy simulation of turbulent boundary layers using Kriging surrogate models

Yoshiaki Abe¹ and Peter E. Vincent²

 ¹ Imperial College London, South Kensington, London, UK, SW7 2AZ, y.abe@imperial.ac.uk
² Imperial College London, South Kensington, London, UK, SW7 2AZ, p.vincent@imperial.ac.uk

Keywords: Flux-Reconstruction schemes, optimal grid configuration, Kriging, turbulent boundary layer, log-layer mismatch

This study aims to construct a framework to identify, a priori, grid properties that achieve accurate prediction of turbulent boundary layers when performing implicit large-eddy simulations (ILES) with high-order Flux Reconstruction (FR) schemes [1, 2]. Wall-normal cell distribution is defined by two parameters, α and β , where α determines the minimum wall-normal cell size adjacent to the wall, and β determines the expansion ratio of cell sizes in the wall-normal direction. An extensive parametric study is carried out in $\alpha\beta$ -space on a turbulent plane Couette flow ($Re_{\tau} = 171$) for various polynomial orders (p) and total degrees of freedom (DoF). Three cost functions are defined (J_1 : log-layer mismatch; J_2 : error in Re_{τ} ; and J_3 : allowable time-step size). A Kriging surrogate model of each cost function is then constructed in $\alpha\beta$ -space, which provides a continuous map of computational accuracy and cost, with respect to wall-normal cell distributions for high-order FR schemes (Fig. 1). Finally, insights from the surrogate model are used to identify optimal meshing strategies for ILES of turbulent boundary layers with high-order FR schemes.

Fig. 1 Visualization of the optimal grid parameters that are identified from the overlap region (black dotted region) of $\alpha\beta$ -combinations, where J_1 and J_2 are smaller than 30% of their maximum values and J_3 is larger than 60% of its maximum value. Blue to white contours show the allowable

time-step size. The red star indicates the optimal grid parameters for maximizing the allowable time-step size in the overlap region.

REFERENCES

- Huynh, H. T., A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods, AIAA 2007-4079.
- [2] F. D. Witherden et al., PyFR: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach, Comput. Phys. Commun., Vol. 11, pp. 3028–3040, 2014.