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Contact of rough surfaces is of prime importance in the study of friction and wear. Numer-
ical simulations are well suited for this non-linear problem, but natural surfaces being frac-
tal [1], they have high discretization requirements. There is therefore a need for efficient
numerical methods able to deal with non-linearities. With finite elements [2], it is neces-
sary to discretize the volume of the solids in contact, increasing the computational cost.
Efficient optimization methods [3, 4] for the contact problem with a boundary-element
formulation based on the FFT algorithm [5] allow an economy of computational resources,
as only the boundary of the solids is discretized. Extension of a boundary-element method
for elasto-plastic contact is feasible [6], on the basis of a boundary-domain integral for-
mulation. We present here a new version of this formulation that takes advantage of the
FFT for a reduction of both algorithmic and memory complexity.
The method is based on our new derivation of the Mindlin [7] fundamental solution using
a partial Fourier transform, similarly to [8]. This allows the computation of displacement
gradients necessary for applying a Newton-Raphson iterative solver with a consistent
tangent operator to the boundary-domain integral formulation [9]. We present an adap-
tation of this treatment that takes advantage of the FFT. The solver gives the plastic
deformations, which are used to compute a new contact solution [6].
With this new method, we compare to models of elastic rough contact [10, 11] and elastic-
saturated rough contact [12, 13], and quantify the effects of elasto-plasticity on the contact
area and the distribution of contact clusters, the latter playing an important role in the
characterization of wear of surfaces [14].
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