VISCOELASTIC-VISCOPLASTIC CONSTITUTIVE MODEL FOR UNIDIRECTIONAL FIBRE REINFORCED POLYMERS

P.-W. GERBAUD ${ }^{1,2}$, F $^{\text {OTERO }}{ }^{2,3}$, P. BUSSETTA ${ }^{2}$, P. P. CAMANHO ${ }^{2,4}$
${ }^{1}$ ENS Cachan, Université Paris-Saclay, Av. du Président Wilson 61, Cachan 94235, France pgerbaud@ens-paris-saclay.fr
${ }^{2}$ INEGI, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
pwgerbaud@inegi.up.pt ; fotero@inegi.up.pt
${ }^{3}$ CIMNE, Centre Internacional de Metodes Numerics en Enginyeria, Gran Capita s/n 08034, Barcelona, Spain fotero@cimne.upc.edu
${ }^{4}$ DEMec, Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias, Porto 4200-465,Portugal
pcamanho@fe.up.pt

Key words: Constitutive model, Fibre reinforced polymers, Viscoplasticity, Viscoelasticity, Invariant theory

Composite materials are increasingly being introduced in automotive (e.g. BMW i-project) and aeronautical (e.g. Airbus A350 and Boeing 787) applications. These applications are exposed to loading conditions with various energies which result in a complex mechanical response, that is vital to accurately predict. In this work, a constitutive model which takes into account the viscous effects in the mechanical behaviour of a unidirectional carbon-epoxy system is presented. This model at the ply scale is based on the very efficient transversely isotropic elastic-plastic model proposed by Vogler et al. (Modeling the inelastic deformation and fracture of polymer composites-Part I: Plasticity model), which can be calibrated for other fibre reinforced polymers (FRPs). An excellent correlation between the measured and numerically predicted stress-strain responses of the specimens was achieved for all specimen types and both strain rate regimes.

REFERENCES

[1] Vogler, M. and Rolfes, R. and Camanho, P. P. Modeling the inelastic deformation and fracture of polymer composites-Part I: Plasticity model. Mechanics of Materials (2013) 59, pp. 50-64.

