SHELLS IN STRAIN GRADIENT ELASTICITY: THEORY, ISOGEOMETRIC IMPLEMENTATION AND APPLICATIONS

Viacheslav Balobanov¹, Josef Kiendl², Sergei Khakalo¹ and Jarkko Niiranen¹

 ¹ Department of Civil Engineering, Aalto University, PO Box 12100, 00076 AALTO, Finland, viacheslav.balobanov@aalto.fi
² Department of Marine Technology, NTNU, Otto Nielsens veg 10, Trondheim, Norway

Keywords: Strain gradient elasticity, Shell structures, Isogeometric analysis

The present work is aimed to reduce the shortage of rigorous shell models in the framework of higher-order strain gradient theories [1]. Such theories show their effectiveness for modelling materials with substructure on different levels: from nano- and micro- to macroscales (see [2], [3], and references therein), and, consequently, can be applied for solving complex engineering problems of different fields. However, there are no contributions devoted to numerical methods of gradient-elastic shells.

First, the physico-matematical model of the Kirchhoff-Love shell of arbitrary geometry is derived in the form of both differential equations and variational formulations. Second, the model is embedded into a commercial finite element software Abaqus as user subroutines following the isogeometric paradigm [4]. Third, a number of tests including comparisons with analytical solutions and full-scale 3D solid element simulations shows that the shell model and its implementation work properly. Fourth, the presented examples illustrate the applicability of the method for shell structures with microstructure.

REFERENCES

- R. D. Mindlin, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis 16 (1964) 51–78.
- [2] J. Niiranen, V. Balobanov, J. Kiendl, S. Hosseini, Variational formulations, model comparisons and isogeometric analysis for Euler-Bernoulli micro- and nanobeam models of strain gradient elasticity, Mathematics and Mechanics of Solids, https://doi.org/10.1177/1081286517739669.
- [3] S. Khakalo, V. Balobanov, J. Niiranen, Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics, revised for International Journal of Engineering Science.
- [4] J. Kiendl, K.-U. Bletzinger, J. Linhard, R. Wchner, Isogeometric shell analysis with Kirchhoff-Love elements, Computer Methods in Applied Mechanics and Engineering 198 (49) (2009) 3902 – 3914.