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In [1], it was remarked that the heat equation could be formulated as the 0-relaxation limit
of a hyperbolic system with source term. This formulation is attractive for the following
reasons: it gives a unified discretization of hyperbolic and diffusive terms; it may allow
to get a high order representation of gradients [2]; it may allow to relax the stiffness
of the advection-diffusion coupling [2]; it may allow to derive non reflecting boundary
conditions [3].

The aim of this talk is first to propose an extension of Cattaneos formulation to general
dissipative systems such as the compressible Navier-Stokes equations, and prove that the
proposed first-order formulation is hyperbolic. The proposed first-order formulation is
an alternative hyperbolic system approach to the continuum-based hyperbolic first-order
system approach introduced in [4].

Then a discontinuous Galerkin discretization of the system is proposed, and the benefits
of this method in terms of stiffness of the system and accurate representation of the fluxes
compared to the classical Navier-Stokes approach are discussed.
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