ELECTRO-CHEMO-MECHANICAL SIMULATION OF 3D-MICROSTRUCTURES FOR LITHIUM-ION BATTERIES

Tobias Hofmann1*, Daniel Westhoff2, Julian Feinauer3, Heiko Andrä1, Jochen Zausch1, Volker Schmidt2, Ralf Müller3

1 Fraunhofer ITWM, Kaiserslautern, Germany, hofmannnt@itwm.fhg.de
2 Institute of Stochastics, Ulm University, Germany
3 Chair of Applied Mechanics, University of Kaiserslautern, Germany

Keywords: Multi-Physics, Electrochemistry, Batteries, Elasticity

A micromodel coupling lithium-ion diffusion and electric potentials\cite{1} to a linear elasto-plastic model is applied and discretized with finite volumes. The numerical algorithm does not require the assembly of a Jacobian and applies the immersed interface method for the electro-chemical problem\cite{2}. An established elastic solver optimized for non-linear heterogeneous structures is applied to describe mechanical strains resulting from lithium-ion intercalation. Numerical examples on several structures are given, including academic structures, and microstructures given by computer tomography compared with microstructures drawn from stochastic models\cite{3}. Figure 1 shows the lithium-ion concentration and stress invariants in a 3D-microstructure of anode material charged with C-rate 1 at 40\% state of charge.

![Figure 1: Concentration, hydrostatic and von-Mises strain on simulated 3D microstructures.](image)

REFERENCES

