AN EXTENSION OF ALGEBRAIC EQUATIONS OF ELASTIC TRUSSES WITH SELF-EQUILIBRATED SYSTEM OF FORCES

Jan Pełczyński ${ }^{1}$, Wojciech Gilewski ${ }^{2}$
${ }^{1}$ Warsaw University of Technology, Al. Armii Ludowej 16, 00-637 Warsaw, Poland, j.pelczynski@il.pw.edu.pl
${ }^{2}$ Warsaw University of Technology, Al. Armii Ludowej 16, 00-637 Warsaw, Poland, w.gilewski@il.pw.edu.pl

Keywords: Elastic trusses, Self-equilibrated forces, Geometric stiffness matrix

Linear elastic analysis of truss structures can be done within the finite element method formalism [2] as well as without the approximation of the displacement field, by algebraic equations [1]. The present paper is an extension of the considerations presented in [1] to the algebraic equations for geometric stiffness matrix. The matrix allow to include the influence of self-equilibrated systems of forces on the response of truss structure. It is a crucial aspect for the qualitative and quantitative analyses of tensegrity-like trusses [3].

Let us to consider a plane pin-joint structure composed of e straight and prismatic bars of the lengths l_{k}, cross sections A_{k} and Young modulus E_{k}. The bars are connected in nodes in which the number of s nodal displacements q_{j} and nodal forces Q_{i} are defined [1]. Axial forces N_{k} can be expressed by the extensions of bars Δ_{k} in the form $N_{k}=E_{k} A_{k} \Delta_{k} / l_{k}$. The extensions Δ_{k} are a combination of nodal displacements $\Delta_{k}=\sum_{j=1}^{s} B_{k j} q_{j}, j=$ $1,2, \ldots, s$. Additionally the self-equilibrated system of axial forces S_{k} which satisfy the homogeneous sat of equilibrium equations $\sum_{k=1}^{e} B_{j k} S_{k}=0$ is considered. If one consider equations of equilibrium in the actual configuration then moment of forces $M_{k}=S_{k} l_{k} \psi_{k}$ is acting on each bar. Angles of bar rotations ψ_{k} can be expressed as a combination of nodal displacements $\psi_{k}=\frac{1}{l_{k}} \sum_{j=1}^{s} C_{k j} q_{j}$. The above formalism leads to the linear system of algebraic equations $\sum_{j=1}^{s}\left(k_{i j}+k_{i j}^{G}\right) q_{j}=Q_{i}$, in which the stiffness matrix $k_{i j}$ and geometric stiffness matrix $k_{i j}^{G}$ can be experssed in algebraic form $k_{i j}=\sum_{k=1}^{e} B_{k i} \frac{E_{k} A_{k}}{l_{k}} B_{k j}$, $k_{i j}^{G}=\sum_{k=1}^{e} C_{k i} \frac{S_{k}}{l_{k}} C_{k j}$. The above considerations can be extended for 3D truss structures.

REFERENCES

[1] T. Lewiński, On algebraic equations of elastic trusses, frames and grillages. Journal of Theoretical and Applied Mechanics, Vol. 39, pp. 307-322, 2001.
[2] K.J. Bathe, Finite element procedures in engineering analysis. Prentice Hall, 1996.
[3] R. Motro, Tensegrity: structural systems for the future. Kogan Page Sciences, 2003.

