AN EXTENSION OF ALGEBRAIC EQUATIONS OF ELASTIC TRUSSES WITH SELF-EQUILIBRATED SYSTEM OF FORCES

Jan Pełczyński¹, Wojciech Gilewski²

¹ Warsaw University of Technology, Al. Armii Ludowej 16, 00-637 Warsaw, Poland, j.pelczynski@il.pw.edu.pl

² Warsaw University of Technology, Al. Armii Ludowej 16, 00-637 Warsaw, Poland, w.gilewski@il.pw.edu.pl

Keywords: Elastic trusses, Self-equilibrated forces, Geometric stiffness matrix

Linear elastic analysis of truss structures can be done within the finite element method formalism [2] as well as without the approximation of the displacement field, by algebraic equations [1]. The present paper is an extension of the considerations presented in [1] to the algebraic equations for geometric stiffness matrix. The matrix allow to include the influence of self-equilibrated systems of forces on the response of truss structure. It is a crucial aspect for the qualitative and quantitative analyses of tensegrity-like trusses [3].

Let us to consider a plane pin-joint structure composed of e straight and prismatic bars of the lengths l_k , cross sections A_k and Young modulus E_k . The bars are connected in nodes in which the number of s nodal displacements q_j and nodal forces Q_i are defined [1]. Axial forces N_k can be expressed by the extensions of bars Δ_k in the form $N_k = E_k A_k \Delta_k / l_k$. The extensions Δ_k are a combination of nodal displacements $\Delta_k = \sum_{j=1}^s B_{kj}q_j$, j =1, 2, ..., s. Additionally the self-equilibrated system of axial forces S_k which satisfy the homogeneous sat of equilibrium equations $\sum_{k=1}^e B_{jk}S_k = 0$ is considered. If one consider equations of equilibrium in the actual configuration then moment of forces $M_k = S_k l_k \psi_k$ is acting on each bar. Angles of bar rotations ψ_k can be expressed as a combination of nodal displacements $\psi_k = \frac{1}{l_k} \sum_{j=1}^s C_{kj}q_j$. The above formalism leads to the linear system of algebraic equations $\sum_{j=1}^s (k_{ij} + k_{ij}^G)q_j = Q_i$, in which the stiffness matrix k_{ij} and geometric stiffness matrix k_{ij}^G can be expressed in algebraic form $k_{ij} = \sum_{k=1}^e B_{ki} \frac{E_k A_k}{l_k} B_{kj}$, $k_{ij}^G = \sum_{k=1}^e C_{ki} \frac{S_k}{l_k} C_{kj}$. The above considerations can be extended for 3D truss structures.

REFERENCES

- [1] T. Lewiński, On algebraic equations of elastic trusses, frames and grillages. *Journal of Theoretical and Applied Mechanics*, Vol. **39**, pp. 307–322, 2001.
- [2] K.J. Bathe, Finite element procedures in engineering analysis. Prentice Hall, 1996.
- [3] R. Motro, Tensegrity: structural systems for the future. Kogan Page Sciences, 2003.