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Linear elastic analysis of truss structures can be done within the finite element method
formalism [2] as well as without the approximation of the displacement field, by algebraic
equations [1]. The present paper is an extension of the considerations presented in [1] to
the algebraic equations for geometric stiffness matrix. The matrix allow to include the
influence of self-equilibrated systems of forces on the response of truss structure. It is a
crucial aspect for the qualitative and quantitative analyses of tensegrity-like trusses [3].

Let us to consider a plane pin-joint structure composed of e straight and prismatic bars of
the lengths lk, cross sections Ak and Young modulus Ek. The bars are connected in nodes
in which the number of s nodal displacements qj and nodal forces Qi are defined [1]. Axial
forces Nk can be expressed by the extensions of bars ∆k in the form Nk = EkAk∆k/lk.
The extensions ∆k are a combination of nodal displacements ∆k =

∑s
j=1Bkjqj, j =

1, 2, ..., s. Additionally the self-equilibrated system of axial forces Sk which satisfy the
homogeneous sat of equilibrium equations

∑e
k=1BjkSk = 0 is considered. If one consider

equations of equilibrium in the actual configuration then moment of forces Mk = Sklkψk

is acting on each bar. Angles of bar rotations ψk can be expressed as a combination
of nodal displacements ψk = 1

lk

∑s
j=1Ckjqj. The above formalism leads to the linear

system of algebraic equations
∑s

j=1 (kij + kGij)qj = Qi, in which the stiffness matrix kij and

geometric stiffness matrix kGij can be experssed in algebraic form kij =
∑e

k=1Bki
EkAk

lk
Bkj,

kGij =
∑e

k=1Cki
Sk

lk
Ckj. The above considerations can be extended for 3D truss structures.
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