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Brittle failure in certain natural and engineered materials is a source of concern for numerous 

applications, including aircraft wings, ceramics in dental implants etc. Microstructural 

information (fracture size, orientation, etc.) plays a key role in governing the fracture 

propagation for these systems but are only known in a statistical sense. Modeling micro-

fractures using Finite Element (FEM) or Finite-Discrete Element methods (FDEM) requires 

massive computational power due to the high spatial and temporal discretization required. 

Hence most models either ignore or idealize fracture interaction and coalescence at the 

microscale because we lack a computationally viable framework to do so. We have developed 

a method to exploit the underlying discrete structure of fractures in brittle material systems by 

modeling propagating fractures as dynamic graphs. We discover compact graph 

representations that require significantly fewer degrees of freedom (dof) to capture micro-

fracture information and emulate the physics of fracture interaction and coalescence using 

various Machine Learning (ML) techniques. We generated fracture and failure data using 185 

simulations of our high-fidelity FDEM software and used 150 simulations for training and 35 

for testing. We compare different ML approaches that include combinations of topological 

and physical considerations, such as fracture orientations, inter-fracture tip distances, stress 

concentration factors at fracture tips and influence of the fracture process zone. Quantities of 

interest include times and paths to failure. Additionally, some methods yield accurate 

predictions of crack length statistics as they evolve over time. The performance of the 

different ML approaches with regards to the different metrics gives us insight into developing 

a hybrid ML-based emulator of our high fidelity model. 

 


