IMPLEMENTATION OF A GRADIENT-ENHANCED DAMAGE MODEL – A HEAT EQUATION-BASED FRAMEWORK

Richard Ostwald¹, Ellen Kuhl^{2,3} and Andreas Menzel^{1,4}

¹ Institute of Mechanics, TU Dortmund University,
Leonhard-Euler-Str. 5, D-44227 Dortmund, Germany – richard.ostwald@udo.edu
² Department of Mechanical Engineering, Stanford University,
Stanford, CA 94305, USA – ekuhl@stanford.edu
³ Department of Bioengineering, Stanford University,
Stanford, CA 94305, USA – ekuhl@stanford.edu
⁴ Division of Solid Mechanics, Lund University,
P.O. Box 118, SE-22100 Lund, Sweden – andreas.menzel@solid.lth.se

Keywords: Gradient-enhanced Damage, Heat Equation, Finite Element Implementation

We provide a framework for the numerical treatment of a gradient-enhanced damage model within thermo-mechanically coupled finite element formulations.

The fully non-local, gradient-enhanced, geometrically non-linear damage formulation employed here was proposed in [1] and represents a finite-strain extension of a concept introduced in [2], where the local free energy function is extended by two additive contributions. The first additional term basically contains the referential gradient of the non-local damage variable. Secondly, a penalty term is added to enforce equivalence between the local damage variable—governed by an ODE—and non-local damage variable, governed by an additional balance equation of elliptic type.

The key observation here is that the additional elliptic balance equation is structurally similar to the steady-state heat equation. As a result, the framework at hand allows for the regularisation of damage using the heat equation—existing finite element codes providing thermo-mechanically coupled elements can be utilised to efficiently regularise the damage formulation. To this end, we show representative three-dimensional boundary value problems, the solution of which can take advantage of the features of existing, sophisticated finite element codes without the need for the implementation of user element routines.

REFERENCES

- T. Waffenschmidt, C. Polindara, A. Menzel and S. Blanco, A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput. Methods Appl. Mech. Engrg. 268, pp. 801–842, 2014.
- [2] B.J. Dimitrijević and K. Hackl, A method for gradient enhancement of continuum damage models. Technische Mechanik, 28, pp. 43–52, 2008.