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Abstract. The authors constructed a mathematical model of a dynamic process in a loaded 

beam on the elastic Winkler foundation in a sudden formation of a defect in the form of a 

change in the boundary conditions. The solution of the static problem of bending of the beam 

pinched at the ends served as the initial condition for the process of forced vibrations hinged 

supported at the ends of a beam, which arose after a sudden break in the connections that 

prevented the rotation of the end sections. The authors determined the dynamic increments of 

stresses in a beam for various combinations of a beam and foundation parameters. 

 

1 INTRODUCTION 

An important problem of construction mechanics is the analysis of the sensitivity of load-

bearing structures to structural rearrangements under load such as suddenly disconnected 

connections, cracks, fractures, etc. Obtaining such information for real constructions requires 

the development of special methods, since this problem cannot be solved by universal 

methods. From the standpoint of structural mechanics in these problems, it becomes necessary 

to calculate such systems as constructively nonlinear, changing the design scheme under load, 

i.e. with dynamic overloads, caused by sudden beyond projected effects. 

In the present work, the task is to construct a mathematical model of transient dynamic 

processes in a beam on an elastic foundation when a defect is suddenly formed in the form of 

a change in the boundary conditions. Before the formation of a defect, the reaction of the 

structure is determined by a static action. The sudden formation of a defect leads to a 

reduction in the overall rigidity of the structure, which does not ensure the static equilibrium 

of the system. The inertial forces that have arisen cause a dynamic reaction, redistribution and 

growth of strains and stresses. As a result, there may be a violation of the regular functioning 

of the structure, or loss of load capacity and destruction. 
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2 STATEMENT OF THE PROBLEM 

The elastic beam with flexural stiffness EI rests on the entire length l on the elastic Winkler 

foundation with stiffness coefficient k, rigidly clamped at the ends. The uniformly distributed 

intensity load q and the foundation reaction affect the outer layers of the beam. It is assumed 

that at some point in time 0t  , the connections in a statically deformed beam, which prevent 

the rotation of the end sections in the supports, suddenly collapsed, forming hinges in the 

place of sealing. The static state of the loaded beam ceases to be in equilibrium and the beam 

will move into motion ( , ),x t during which the deformations and stresses in the beam acquire 

dynamic increments. 

 

3 SOLUTION OF THE PROBLEM 

The problem is solved in the following sequence: 

1) we determine the static deflection of a (“undamaged”) beam with clamped ends on an 

elastic foundation, which is used subsequently as the initial condition of a dynamic process, 

which is initiated in the system by a sudden transformation of the boundary conditions;  

2) we determine the frequencies and forms of bending vibrations of a (“damaged”) beam 

with hinged ends on an elastic foundation; 

3) we study the forced bending vibrations of a loaded beam. In this case, the load, the static 

deflection of the “undamaged” beam and the desired dynamic deflection are decomposed into 

series according to the modes of natural vibrations of the “damaged” beam. 

3.1 The static bending of a beam, which is pinched at the ends on Winkler foundation, in 

dimensionless variables and parameters 
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The general solution of equation (1) in the case of pinching ends has the form [1, 2] 
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is Krylov function of the form 
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are the initial parameters, respectively, the dimensionless bending moment and the 

shear force at the origin 0.   
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The dimensionless bending moment in a static state is determined by the function 

     2 0 4 0 .stw qk w k w                                                (3) 

Figure 1 shows the diagrams of bending moments in a beam with clamped ends for various 
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values of the generalized rigidity of the “beam-foundation” system 
44 .   It is worth 

paying attention to the somewhat “unusual” form, which takes the moment epures with 

increasing rigidity of the system – the moments in the central part of the beam are much lower 

than in the quarter of spans. This is the result of the combined effect of external unloading on 

the beam and the reaction of the elastic foundation. 
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Figure 1: Epures of bending moments in the initial static state, depending on the rigidity index 

of the “beam-foundatio” system  

 

3.2 The resulting motion  ,dyn x t  after a sudden transformation of the restraints of 

the beam into the hinges is described by equation [2] 
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where 
 

0

,
, .dyn
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w w t

l
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  0

k
w

A
 is a parameter having a frequency dimension and, 

therefore, called a “conventional” frequency. 

Equation (4) describes the forced vibrations of a loaded beam. The Winkler model does not 

imply dynamic phenomena in the elastic foundation. The required eigenfunctions and 

frequencies of the problem will be obtained from equation (4) with the zeroed right-hand side, 

which after separation of the variables by representation 

 sin ,dynw W                                                         (5) 

takes the form  
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where 
0





  is a dimensionless eigenfrequency of the bending vibrations of a beam on an 

elastic foundation. 

Using the “conventional” frequency 0 , characterizing stiff and inertial properties of the 

“beam-foundation” system, and the known basic frequency of bending vibrations of a free 
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beam supported in the same way (without foundation support)  
2
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we bring the equation to the form (6) 
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where 0
0

1 f





 is a relative “conventional” frequency;

1 f





  is a relative required 

frequency. 

Using Euler substitution 

,rW Ae                                                              (8) 

we find the characteristic equation for differential equation (7) 

 4 4 2 2
0 0,r       

roots of which can be represented in two ways, depending on the ratios of frequencies 0 and

 : 

1) if 0,  then the roots of equation (9) are real and purely imaginary 

2 24
1,2 1 3,4 1 1 0, , ,r r i                                         (10) 

the deflection function (8) has the form 

1 1 2 1 3 1 4 1cos sin ;W A ch A sh A A                                     (11) 

2) if 0,   then the roots of equation (9) are complex 
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and the deflection function 

1 2 2 2 2 2 3 2 2 4 2 2sin cos sin cos .W A sh A sh A ch A ch                        (13) 

It was shown in [3, 4] that for a beam completely supported on the Winkler foundation, in 

the case of canonical boundary conditions  – pinch- pinch, pinch - hinge, hinge-hinge, console 

– only variant (10) is realized. 

Using the initial parameters 
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instead of integration constants  1 4 ,iA i    we write the relations characterizing the state of 

arbitrary cross-section  of the beam, using version (10), (11). 

In this case, the deflection function has the form 
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where  1 4iR i    – Krylov functions of the form 
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The state of the arbitrary beam section is described by the matrix equation 

   1 0,W V W                                                        (17) 

where  W  is a state vector of arbitrary section  
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          ;W W W W W        
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3.3 We will conduct an analysis of free frequencies and forms of flexural vibrations of a 

beam on an elastic foundation when the ends are hinged. In this case, the boundary conditions 

and the deflection function have the form  
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Satisfying the second pair of boundary conditions (18), from function (19) and its second 

derivative, we obtain a system of two algebraic equations of relatively unknown initial 

parameters and 0W   и 0W 
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The condition for the existence of nonzero solutions of a given homogeneous system is that 

the determinant of the coefficient matrix of this system is equal to zero 
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Expanding the determinant, we obtain the frequency equation 

1 14sin 0,sh    

whence it follows that  
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Taking into account formula (10), we obtain the frequency spectrum 

2 4
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From any equation of the system (20) with n n  , it follows that 
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then, according to (19), the n-th form with frequency ,n  has the form 

  sin ,n nW A n 
                                                  

(23) 

where п is a number of half-waves of a sinusoid on length l of a beam; 
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nA
 
is an unknown amplitude of vibrations in n-th form. 

Thus, the forms of free vibrations of the beam on an elastic foundation remain the same as for 

the free beam, but with frequencies ,n which are larger than the corresponding frequencies 

of the free beam 
nf

 in 2 4
0 n  times, i.e. according to (22) 

2 4
0 .

nn fn     

3.4 The solution of the differential equation of forced vibrations (4) will be sought by 

expanding the function  ,dynw   in a series of eigenfunctions  nW   (23) with coefficients 

in the form of unknown time functions  nQ 
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We find functions  nQ  using the following procedures: substituting the series (13) and the 

expression (2) into equation (4), multiplying both sides of this equation by   ,nW  integrating 

both parts of  from 0 to 1 and, using the property of orthogonality of the modes of free 

vibrations   ,nW  we obtain the differential equation for defining functions  nQ 
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The general solution of the inhomogeneous equation (25) 

1 2 2
0 0

cos sinn n n
n n n

n

S
Q D D

 
 

  
  

                                

(26) 

is a sum of the solution of the relevant homogeneous equation (the first two terms) and the 

particular solution corresponding to the right-hand side of (25) (the third term). 

Now, according to (24), the dynamic deflection function takes the form 
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The constants of integration 1nD and 2nD are determined from the initial conditions 
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From the second condition (28) we determine one constant 

2 0.nD 
                                                      (29) 

 

Multiplying both sides of the first condition (28), taking into account (27) and (29), by

sin n , and integrating on   from 0 to 1, we obtain another constant 
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where  
1

0

2 sin .n stB w n d     

Substituting (29) and (30) into (27), and taking into account the trigonometric identity 
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The dimensionless bending moment is obtained by differentiating the series (31) twice 
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4. A NUMERICAL EXAMPLE 

The Maple software package helped to calculate the dimensionless deflections ( )w   and 

bending moments ( )w  in a beam, which is loaded by a uniformly distributed intensity load 

1q , on the elastic Winkler foundation 

– in an initial static state, when the ends are pinched: ( ),stw  ( )stw  ; 

– in a static state formed after a quasi-static transformation of pinches into hinges ( ),qw  ( )qw  ; 

– in a dynamic process that occurs when in a sudden transformation of pinches into hinges: 

wdyn(, ), ( )dynw  . 

In practical calculations, 20 series members (19) and (20) were taken into account. In this 

case, we obtain a practical coincidence of epures of the dynamic deflection wdyn(, 0) and the 

static deflection wst(), that is, 
20

1

sin ( )n st

n

B n w 


 . 

The results of the calculations are shown in Figures 2 and 3, as well as in Table 1. In 

Figures 2 and 3 are shown respectively: epures of bending moments ( )qw 
 
in a beam after 

quasi-static of transformation of pinches into hinges, and during vibrations 0( , )dynw  
 
after 

sudden transformation of pinches into hinges at the time 0  
of reaching the highest values. 

The epures are constructed for different values of the stiffness parameter of the “beam-

foundation” system . 
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Figure 3: Moments in the cross section ξ = 0,16 (time scanning). Mmax = 0,047 

 
Table 1: Influence of the rigidity of the “beam-foundation” system on the increment of bending moments 

 

max
stw  max

qw  Кst 
max
dynw  Кdyn 

0 0,083 0,125 1,506 0,3 3,614 

10 0,082 0,112 1,366 0,269 3,28 

10
1,5 

0,079 0,093 1,177 0,225 2,848 

10
2 

0,071 0,06 0,845 1,156 2,197 

10
2,5 

0,0544 0,0265 0,487 0,07 1,287 

10
3 

0,0334 0,0104 0,311 0,0346 1,036 

10
3,5 

0,018 0,0055 0,305 0,0186 1,033 
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Figure 2: Epures of bending moments after quasi-static transformation of boundary conditions depending  on the 

rigidity index of the “beam-foundation” system  
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CONCLUSIONS 

If we consider the transformation of the boundary conditions in the given “beam-

foundation system” under the load as a defect, then the conducted study shows that the quasi-

static formation of a defect, that is, a reduction in the rigidity of the end supports, leads to an 

insignificant increase in the maximum stresses in the beam (Кst> 1) if there is no foundation 

( = 0) and low values of the indicator of the “beam-foundation” system (0< ≤ 10
1,79

). For 

beams resting on more rigid foundations (> 10
1,79

), the formation of the same defect, on the 

contrary, leads to a decrease in the greatest stresses (Кst< 1). 

A sudden formation of a defect gives more than three times (Кdyn = 3,614) an increase in 

the maximum stress in a free beam (= 0). For systems with higher rigidity, the effect of 

transforming the boundary conditions is reduced. There is a redistribution of stresses along 

the span, but the greatest stress at  >10
4
 does not exceed the initial static value (Кdyn = 1). In 

addition, regardless of the rate of defect formation with increasing rigidity of the system, the 

greatest stresses move from the center of the beam to the periphery of the span. 

 

The work was conducted within the framework of the basic part of the state task 

1.5265.2017/BP (1.5265.2017/8.9) 
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