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Abstract. This work concerns the development of a finite-element algorithm to dis-
cretize the phase-field model for the shape deformation of a vesicle based on the idea of
discontinuous Galerkin method. The phase-field model originated from minimization of
Canham-Helfrich elastic bending energy involves fourth-order gradients and thus C1-basis
functions are required for the standard conforming Galerkin formulation. We introduce
a relatively inexpensive, nonconforming method based on C0-basis functions. We present
the variational form of the method including additional terms to weakly enforce continu-
ity of the derivatives across interelement boundaries and its stabilization is achieved via
Nitsche’s method. Numerical tests for the equilibrium shape of a single component vesicle
are performed to demonstrate the performance of the proposed variational formulation.

1 INTRODUCTION

Vesicles are simple forms of closed biomembranes. They are formed by bilayers of lipid
molecules with a few nanometers thick ranging between 50 nm to tens of micrometers in
diameter [1]. They are essential for many biological functions such as regulating protein
activity and replication of viruses [2]. The objective of this study is to model the shape
deformation of a vesicle using a C0-discontinuous Galerkin formulation based on a phase-
field bending elasticity model.
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We employ the phase-field model originated from minimization of Canham-Helfrich
elastic energy [3, 4] for modeling the shape deformation of vesicles. One of the main
attractions of the phase-field model is its capability of easily incorporating the com-
plex topological and geometrical changes without the explicit tracking of the interfaces.
The phase-field model involves fourth-order partial derivatives. As a result, a standard
Galerkin approximation requires C1-continuous basis functions such that the phase-field
variable and its first derivatives are continuous. Examples include Hermite elements
and B-splines. Using Hermite elements on unstructured meshes presents difficulties and
certain partitions are not permissible with their isoparametric versions [5]. The use of
B-splines with arbitrarily shaped domains often involves either a mapping (as with iso-
geometrics) or a ‘fictitious-domain’ type of approaches [6]. More importantly, B-splines
are non-interpolatory and, thus, imposing even simple Dirichlet boundary conditions can
be problematic. Mixed finite-element methods present a relatively expensive alternative,
requiring separate approximations for primary and secondary fields [7]. In this study, we
present a finite-element formulation based on C0-elements that can avoid these drawbacks.

The challenge of modeling the vesicle shape deformation using the phase-field model is
high computational cost. This is because the phase-field is defined on the whole physical
domain and it changes rapidly only near the transition layer around the vesicle membrane
surface. Therefore, the use of adaptive meshing is more ideal than using uniform meshes
on the whole domain. Bearing in mind this, developing efficient finite-element methods
is important to model the shape deformation of the vesicle. Several methods have been
developed, for example, an adaptive mixed method [8] and B-spline based finite-element
method [9]. We expect that application of adaptivity to our proposed C0-elements based
finite-element formulation can be easily achieved.

The main goal of the paper is to present a variational formulation using C0-elements
to discretize the nonlinear fourth-order phase-field model for the shape deformation of
vesicles. We employ Nitsche’s [10] method to weakly impose continuity of the derivatives
across element interfaces. An additional penalty like term is incorporated to achieve sta-
bilization. Nitsche’s method was first employed to develop a nonconforming finite-element
formulation for a fourth-order elliptic problem by Baker [12]. Our approach is relevant
to a consistent C0-interior penalty method that was presented for beam and plate theo-
ries [11] and a second-gradient theory [13, 14, 16, 15]. Recently, Nitsche’s method has been
also successfully applied for weakly imposing Dirichlet boundary conditions in standard
finite-element methods for second- and fourth-order partial differential equations [17, 18]
and B-splines [19, 20].

The remainder of the paper is organized as follows. In Section 2, we briefly present
the phased-field model for the equilibrium shape of vesicles. In Section 3, we introduce
a variational formulation based on Nitsche’s method for the phase-field model [31]). In
Section 4, the capability of the proposed variational formulation is tested with a bi-concave
shape example. Finally, in Section 5, we provide conclusions and a summary of directions
for future work.
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2 GOVERNING EQUATION

In the present work, we use the phase-field model of the Canham-Helfrich curvature
energy [3, 4] for easy tracking of the shape deformation of the membrane surface. In doing
so, we first introduce a phase-field function φ(x) on the computational domain Ω as in
Du and his colleagues [8, 21, 22]. We visualize that the level set {x : φ(x) = 0} gives
the membrane surface S, while {x : φ(x) < 0} represents the inside of the membrane and
{x : φ(x) > 0} the outside. The equilibrium shape of the vesicle membrane is determined
by minimizing its shape energy, usually taken to be its bending energy.

To derive the phase-field model, we introduce the phase-field bending energy [21, 22]
given by

E(φ) =

∫
Ω

1

2
κε

(
∆φ− 1

ε2
(φ2 − 1)(φ+ Cε)

)2

dv (1)

where ε is the transition parameter related to the interface thickness and C is the param-
eter representing the effect of the spontaneous curvature. Then, the phase-field model
for the equilibrium shape of a vesicle can be given by minimizing the energy (1) sub-
ject to the prescribed surface area and bulk volume. We employ the work of Du and
colleagues [8, 21, 22] for the prescribed volume and area constraints. In doing so, we
define

V (φ) =
1

2

(∫
Ω

φ(x) dv

)
(2)

for the prescribed volume constraint and

A(φ) =
3

2
√

2

∫
Ω

[
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

]
dv (3)

for the prescribed surface area. We also consider the following initial phase-field function,

φ(x) = tanh

(
d(x, S)√

2ε

)
, (4)

that was commonly used by Du and his colleagues [8, 21, 22]. Here, d(x, S) is the signed
distance function from a point x ∈ Ω to the membrane surface S.

To deal with surface area and volume constraints, we employ the following penalty
formulation [8]

EP(φ) = E(φ) +
αv
2

(V (φ)− V0)2 +
αa
2

(A(φ)− A0)2 (5)

where V0 and A0 represent the prescribed volume and the prescribed surface area and αv
and αa are the penalty parameters. The problem to find equilibrium configurations of a
vesicle membrane can be formulated as finding the phase-field function φ(x) on the whole
domain Ω that minimizes the energy functional (5).
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To find a minimizer of the energy (5), we employ a gradient flow approach that has been
successfully used for solving the phase-field model of single-component vesicles [8, 21, 22].
Then, the variational problem can be solved via the gradient flow

∂φ

∂t
= −δEP(φ)

δφ
(6)

where δ/δφ denotes the first variation of the functional (5). By taking the first variation
of (5) and substituting it into the right-hand side of (6), (6) can be rewritten as

∂φ

∂t
= ∆Q− 1

ε2
Q(3φ2 + 2Cεφ− 1) + αv(V (φ)− V0)+

αa(A(φ)− A0)

[
− 3

2
√

2
ε

(
∆φ− 1

ε2
(φ2 − 1)φ

)]
(7)

where Q = ε∆φ − 1
ε
(φ2 − 1)(φ + Cε). To find the equilibrium shape of the vesicle, we

use the time-dependent flow equation (7) with the initial phase-field function (4). Notice
that it is the nonlinear and fourth order time-dependent partial differential equation and
thus requires the nonlinear solver and an appropriate time-stepping algorithm.

To construct the weak form of (7), we introduce the space of an admissible solution
field as V ⊂ H2(Ω), where H2(Ω) denotes the classical Sobolev space of order 2. For
convenience, we define the space of a test field as W ⊂ H2(Ω) with

W = {w ∈ H2(Ω) | w = ∇w · n = 0 on ∂Ω}. (8)

By multiplying a test function w ∈ W , taking integration over Ω, and applying inte-
gration by parts, the weak form to (7) can be stated as: Find φ ∈ V such that, for all
w ∈ W , ∫

Ω

w
∂φ

∂t
dv = ε

∫
Ω

∆w∆φ dv +
2

ε

∫
Ω

(∇w · ∇φ)(3φ2 + 2Cεφ− 1) dv

+
1

ε

∫
Ω

w(6φ+ 2Cε)(∇φ · ∇φ) dv

+
1

ε3

∫
Ω

w(3φ2 + 2Cεφ− 1)(φ2 − 1)(φ+ Cε) dv

+ αa

∫
Ω

w(A(φ)− A0)

[
− 3

2
√

2
ε

(
∆φ− 1

ε2
(φ2 − 1)φ

)]
dv

+ αv

∫
Ω

w(V (φ)− V0) dv.

(9)

Notice that (9) is H2-conforming and thus it is valid for C1-continuous basis functions
such as Hermite elements and B-splines.
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3 C0-DISCONTINUOUS GALERKIN FORMULATION

We present the non-conforming formulation based on the idea of Engel et al. [11]. This
formulation uses C0-continuous basis functions so that their first derivatives are discon-
tinuous. Continuity of these first derivatives on element boundaries is weakly imposed
based on Nitsche’s method [10].

To construct the bases, we consider a regular finite-element partition Ωh = ∪Ni=1Ωi, with
Ωh ≈ Ω and N the total number of elements in the mesh. We choose an approximation
function φh ∈ Vh which is continuous on the entire domain but discontinuous in its first
and higher derivatives across element boundaries. Notice that Vh is a non-conforming
approximation of V , i.e., Vh 6⊂ V . The approximation φh(x) to the phase-field function
φ(x) is given by

φh(x) =
∑
I

NI(ξ(x))φI (10)

where φI is the nodal value at node I and ξ(x) is the position in a reference element.
Here, NI is a basis function that belongs to the set of Lagrangian iso-parametric functions

{NI} = {NI ∈ C0(Ωh) : NI |Ωe ∈ Pk(Ωe)}, I = 1, . . . ,M (11)

where M denotes the number of nodes in the mesh and Pk(Ωe) is the space of complete
polynomials with the order less than or equal to k defined over element Ωe. For the sake
of brevity, we denote the set of element interiors by Ω̃ and the set of all interior edges
by Γ̃. In two dimensions, Γ̃ refers only to those element edges that are shared by two
spatially adjacent elements, and does not include edges along the physical boundary ∂Ω.

The finite-element formulation we propose to approximate the solution of the gradient
flow (7) is stated as: Find φh ∈ Vh such that, for all wh ∈ Wh,∫

Ω

wh
∂φh
∂t

dv = ε

∫
Ω̃

∆wh∆φh dv +
2

ε

∫
Ω̃

(∇wh · ∇φh)(3φ2
h + 2Cεφh − 1) dv

+
1

ε

∫
Ω̃

wh(6φh + 2Cε)(∇φh · ∇φh) dv

+
1

ε3

∫
Ω̃

wh(3φ
2
h + 2Cεφh − 1)(φ2

h − 1)(φh + Cε) dv

− ε
∫

Γ̃

[[∇wh · n]]〈〈∆φh〉〉 ds− ε
∫

Γ̃

[[∇φh · n]]〈〈∆wh〉〉 ds

+ τ

∫
Γ̃

[[∇wh · n]][[∇φh · n]] ds

+ αa

∫
Ω̃

wh(A(φh)− A0)

[
− 3

2
√

2
ε

(
∆φh −

1

ε2
(φ2

h − 1)φh

)]
dv

+ αv

∫
Ω̃

w(V (φh)− V0) dv

(12)

where τ is the stabilization parameter which is inversely proportional to the mesh size
h, i.e., τ ∼ 1/h and [[ · ]] and 〈〈 · 〉〉 represent the jump and average operators on element
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interiors, respectively. In comparison to (9), additional terms are included in the fourth
and fifth lines to weakly impose continuity of the first derivatives to the normal direction
at element interior edges.

4 NUMERICAL STUDY

The finite-element formulation (12) is implemented in Multi-Physics Object Oriented
Simulation Environment (MOOSE), which is an open source finite-element tool to solve
partial differential equations [23]. For the implementation of (12), we use DG kernel
with the standard Lagrangian shape functions and the iterative Jacobian free Newton
Krylov (JFNK) method as a nonlinear solver in MOOSE. Notice that the use of the
iterative Krylov subspace method enables good scalability of large simulations in parallel
environment, while providing quadratic convergence without the incorporation of the
exact Jacobian. In the present study, we consider an axisymmetric shape deformation of
a vesicle in two dimensions.

(a) Initial shape (b) Equilibirum shape

Figure 1: The bi-concave shape example.

We consider a bi-concave shape as an initial shape of a vesicle. We choose ε depending
on the mesh size, i.e., ε = 4h with h being the mesh size, to ensure enough resolution
within the transition layer. We take the time step ∆t = 0.0001 and the penalty parameters
of αv = 1000 and αa = 500 for volume and area constraints. In MOOSE, a QUAD8 element
is used as a C0-basis function. The stabilization parameter is chosen as proportional to
1/h, i.e., τ ∼ 1/h.

Axisymmetric equilibrium vesicle shapes are determined for different values of reduced
volume [24] which is the key control parameter. Figure 1(b) shows a bi-concave disc,
similar in shape to a human red blood cell, obtained from the initial configuration of an
oblate spheroid with a reduced volume of 0.62. As shown in Figure 2, the curvature energy
decreases until a steady state is reached, indicating the shape equilibrium of the vesicle.
The errors of the area and volume constraints are less than 1.5% and 2.0%, respectively.

In Figure 3, we test various types of C0-elements using QUAD9, QUAD8 and TRI6 that are
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Figure 2: The evolution of curvature energy.

(a) QUAD8 (b) QUAD9

(c) HERMITE (d) TRI6

Figure 3: Equilibrium shape of Bi-concave example with different element types.

available on MOOSE along with the C1 HERMITE element. All the parameters are taken to
be the same. It is worth mentioning that for the HERMITE element, the Nitsche’s terms are
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Element Nodes Elements Area error(%) Volume error(%) Total time (seconds)
HERMITE 13041 3200 2.75 3.51 1906
QUAD8 9841 3200 2.89 2.58 1826
QUAD9 13041 3200 2.54 2.87 2242
TRI6 14985 7372 3.48 4.12 1956

Table 1: Comparision of number of nodes, elements, area and volume error and simulation time for
different element types.

not needed and so we use the standard Galerkin formulation (9). The simulations are run
until it reaches to the steady state based on the curvature energy. The final equilibrium
shapes are displayed in Figure 3. The shapes of QUAD8 and QUAD9 cases are qualitatively
indistinguishable and they both have good agreement with the HERMITE case except for
slight deviation of the curvature near the z-axis. The shape of TRI6 does not match other
cases well and it could be due to the insufficient mesh density. It should be expected that
those discrepancies will be eliminated by increasing the number of elements. Some more
detailed comparison is given in Table 1. For the C0-discontinuous Galerkin method, it
seems that QUAD8 is a suitable choice in terms of the accuracy and efficiency. With same
number of elements, the use of QUAD8 would have less number of nodes than QUAD9 and
HERMITE and thus leads to less overall simulation time.

5 CONCLUSIONS

In this paper, we introduce C0-elements based discontinuous Galerkin formulation for
the fourth-order phase-field model to predict the equilibrium shape of a vesicle. Using
MOOSE, numerical study for the two-dimensional and axisymmetric bi-concave shape
verifies that the proposed formulation can capture the equilibrium shape of the vesicle.
In the future, we will investigate the influence of the stabilization parameter τ and the
effect of the mesh size within the transition layer on the shape deformation of the vesicle.
Further study will be performed for complex morphological transformations to capture
various equilibrium shapes of vesicle deformation such as budding and fission. Moreover,
this study will be eventually extended to the three-dimensional vesicle shape deformation.
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