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Abstract. An approach is presented that allows using lamination parameters for prob-
abilistic analyses of the onset of material failure of composite structures. Lamination
parameters allow for describing the scatter of ply orientations with 12 parameters, inde-
pendently of the number of plies. The probabilistic analysis is split into two steps. First,
the stochastic distribution of lamination parameters due to scattering ply orientations is
determined analytically. Secondly, the stochastic distribution of the structural response
(buckling load, material failure) is determined using lamination parameters as random in-
put parameters. The drawback of utilizing lamination parameters is that the information
of a discrete stacking gets lost as the lamination parameters vary. A discrete stacking
however is required to evaluate strength criteria like, for instance, the Tsai-Wu criterion.
In the current contribution, for each strength evaluation a discrete stacking, which corre-
sponds to a varied set of lamination parameters, is determined by optimization. Then, for
each stacking the Tsai-Wu criterion is evaluated. The proposed approach requires a cou-
ple of steps, which are not required when directly considering ply orientation as random
parameter. Still, the approach offers efficiency gain, which is demonstrated by examples
with analytical and numerical objective functions.

1 INTRODUCTION

The structural response of composite structures show relatively large scatter of struc-
tural response. Therefore, probabilistic design approaches are promising to reduce con-
servatism in the sizing of composites structures [1]. One source of scatter is the scatter of
fibre orientations of each ply. When fibre orientations are considered as random param-
eters within a probabilistic analysis, the number of parameters obviously increases with
the number of plies. When applying gradient based probabilistic approaches to structural
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response function for which the derivatives are not given analytically, the computational
effort increases with the number of parameters and hence, with number of plies. Lamina-
tion parameters allow for describing the stiffness of any laminate with only 12 parameters.
Therefore, lamination parameters have been widely used for optimization of composite
structures (see, e.g., [2, 3, 4]). In a similar manner, lamination parameters also can be
used for gradient-based probabilistic analyses of composite structures [5].

When lamination parameters vary within an optimization or probabilistic analysis, the
information of fiber orientations is lost. This prevents applying typical failure criteria for
composites structures, which are evaluated on ply level. Therefore, lamination parameters
have mostly be used for stiffness problems like buckling or aeroelastic stability. However,
the more layers a laminate consists of, i.e. the thicker the laminate is, the more it is the
material strength, which is decisive for the structural performance. Ijsselmuiden et al. [6]
incorporated the Tsai-Wu failure criterion into the lamination parameter design space.
They show that their approach accurately represents the factor of safety of practical
laminates under in-plane loading; however, for bending dominated problems it may be too
conservative. To the authors knowledge, there is no other failure criterion for composites
defined in the space of lamination parameters.

In the current contribution, buckling and material strength of composite structure are
considered within the probabilistic analysis with lamination parameters. A discrete layup
is determined by an optimization algorithm any time the set of lamination parameters
varies. Then, a failure criterion is evaluated on ply level. The applicability of the new
approach is demonstrated with an analytic example and the efficiency improvement is
demonstrated by application to a use case which involves nonlinear finite element simu-
lations for buckling and strength evaluation.

2 PROBABILISTIC ANALYSIS WITH LAMINATION PARAMETERS

The objective of the probabilistic analyses in this paper is to determine the stochastic
distribution of the structural response (buckling and/or material failure) due to random
ply orientations, as shown in figure 1. The use of lamination parameters requires to split
the probabilistic analysis into two steps, which is described in the following section.
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Figure 1: Probabilistic analysis with ply angles as random parameters
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2.1 Two step approach using lamination parameters

Tsai and Hahn [7] introduced the concept of lamination parameters (where in [7] the
lamination parameters are referred to as geometric factors.) The basic concept is to
decompose the stiffness matrix (”ABD matrix”) into a set of parameters ξ, which are
only dependent on the ply orientations, and another set of parameters U, which are
only dependent on the material properties. For the definition of these parameters see
the appendix. The number of lamination parameters that describe the ply orientation is
always smaller or equal 12, no matter how many plies a laminate consists of. Therefore,
the use of lamination parameters allows for reducing the number of parameters involved
in an analysis, if the number of plies exceeds 12.
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Figure 2: Two-step probabilistic analysis with ply angles as random parameters, using lamination
parameters

Using lamination parameters for a probabilistic analysis requires to split the analysis
into two steps, as shown in figure 2. In the first step, the joint stochastic distribution
of lamination parameters ξkj is determined based on the stochastic distributions of ply
orientations ϕi. This first analysis can be performed analytically as shown in [5], and it
is therefore very fast. As shown in [5], the lamination parameters approximately follow
gaussian distribution as the number of plies increases. Hence, their distribution is fully
described by the mean values, variances and co-variances.

In the second step, the lamination parameters ξkj are the random input parameters and
the stochastic distribution of the structural response is determined. Since this response
may be result form nonlinear finite element analyses, the second step typically required
much more computing time. Depending on the probabilistic approach used, it is beneficial
to have a low number of random parameters in order to keep the computational cost low.
This is what is achieved by using lamination parameters, if the number of plies exceeds
12.

2.2 Probabilistic approach

Consider the objective function g(x), which is a function of realizations x of the random
vector X with the probability density function fX(x). The objective of the probabilistic
approaches is to determine the stochastic distribution Fg(g) of the objective function g
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due to the scatter of X. In the current paper, the objective function is given by the failure
load of a composite structure and the random vector contains the ply orientation (when
using the one-step approach) or the lamination parameters (when using the two-step
approach).

One of the simplest and fastest probabilistic approaches is the first-order second-
moment (FOSM) method, which utilizes a first-order Taylor series expansion of the objec-
tive function g at the mean vector µ of X. Inserting the Taylor series into the definition
of the mean value µg of g yields the following approximation.

µg ≈ g(µ) (1)

In a similar manner, the variance σ2
g of g is approximated.

σ2
g ≈

n∑
i=1

n∑
j=1

∂g(µ)

∂xi

∂g(µ)

∂xj
cov(Xi, Xj) (2)

Using a second-order Taylor series yields a higher order approximation of mean and vari-
ance, like the incomplete second order approach (ISOA) suggested in [1]. In any case,
approaches based on Taylor series require the derivatives of the objective function. If
these are not given explicitly (for instance because the objective function results from a
nonlinear finite element analysis), the derivatives must be estimated by finite differences.
When using central differences, 2n+ 1 evaluations of the objective function are required,
where n is the number of random parameters.

For validation of the approach, the Monte Carlo method is used. For a Monte Carlo
simulation, a large number of realizations x(i) of the random vector X is generated ac-
cording to its distribution fX(x). For each realization, the objective function is evaluated
g(x(i)) = gi and thereby a discrete distribution of g is obtained. The Monte Carlo method
is typically the computationally most expensive method, but it also provides a very robust
and easy to use algorithm. Several techniques exist which improve the efficiency of Monte
Carlo simulations, such as importance sampling or response surface methods (see, e.g.,
[8]).

3 STRENGTH EVALUATION FOR LAMINATION PARAMETERS

Lamination parameters mostly have been used for the optimization of stiffness problems
such as the mass minimization with buckling constraints [4], maximization of buckling load
for constant volume [9], and the aerodynamic design optimization of wings [10], [11]. Con-
sidering material strength is difficult since because as lamination parameter vary (within
optimization or probabilistic analysis) the information of an associated stacking sequence
is lost. Therefore, it is not possible to determine the stresses in each unidirectional ply,
which are required for evaluating failure criteria.

Ijsselmuiden et al. [6] found a way to incorporate the Tsai-Wu failure criterion into
the lamination parameter design space, which requires several conservative assumptions.
Especially for laminates subject to bending it is overly conservative. In structure where
material failure occurs after local buckling, bending plays an important role.
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When performing optimization with lamination parameters, at the end of the opti-
mization a certain stacking is desired as result. It has been proposed to determine such a
stacking sequence by an subsequent optimization, which seeks the set of ply orientations
which matches the lamination parameters obtain from the structural optimization best
(see, e.g, [4]). In the current paper, a similar approach is followed to obtain a discrete
stacking each time the material strength of a laminate is evaluated.

In the second step of the two-step approach, FOSM or ISOA are used to determine the
stochastic distribution of material failure. For that, finite difference steps are performed
for each lamination parameter. Each time the failure criterion is evaluated for varied
lamination parameters, the following optimization problem is solved.

min
ϕ
‖ξtarget − ξ(ϕ)‖ (3)

Here, ξtarget is the set of lamination parameters for which material failure needs to be
evaluated, and ξ(ϕ) is the set of lamination parameters that is varied to match the ξtarget
considered, by varying the ply orientations ϕ. For the current paper, the interior point
method is used as optimization algorithm.

The function (5) that transforms a layup of np plies to a set of lamination parameters
is a nonlinear function Rnp → R12 (where typically np > 12, because otherwise there is
no efficiency gain by using lamination parameters). The inverse function is a surjective
function, which means that multiple stackings have the same set of lamination parameters.
In the current paper, the staking sequence that corresponds to the mean stacking is used
as start vector for the optimization, which increases the chance to find the solution which
is closest to the mean. But determining one stacking sequence for one set of lamination
parameters and evaluating material strength only for this one stacking is a simplification,
which needs to be emphasized.

4 NUMERICAL EXAMPLES AND RESULTS

The approach described in the previous section is applied to two examples, one which
allows a fast, analytic evaluation of the objective function, and one with a more realistic,
time consuming objective function. In all cases the ply angles are assumed to be uniformly
distributed in an interval of ±5◦.

4.1 Analytical objective function

As a first example, the stacking sequence [45, 90,−45, 0]5s is considered with a ply
thickness of 0.125mm and the material properties given in table 1.

The laminate is subject to the section force Nx = 1430N/mm in load case A and
the section forces Nx = 660N/mm,Ny = 1080N/mm,Nxy = 540N/mm,Mx = 300N in
load case B. The stresses in each ply are determined by classical laminate theory and the
Tsai-Wu criterion [12] is used to evaluate failure, indicated by a reserve factor (RF) below
1.

The two-step approach is used with FOSM and ISOA in the second analysis. For
validation, two Monte Carlo simulation are carried out with 400 samples. In the ”1-step
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Table 1: Generic material properties used for the analytic example

stiffness properties strength properties
E11 140000N/mm2 XT 2000N/mm2

E22 12000N/mm2 XC 1500N/mm2

ν12 0.26 YT 70N/mm2

G12 5800N/mm2 YC 230N/mm2

SL 90N/mm2

Table 2: Results of the probabilistic analyses of the analytic

load case A load case B
mean RF stdv of RF mean MFL stdv MFL

1-step Monte Carlo 1.085 0.020 1.137 0.025
2-step Monte Carlo 1.086 0.020 1.134 0.024

FOSM 1.104 0.013 1.137 0.018
ISOA 1.100 0.013 1.135 0.018

Monte Carlo” simulation the ply orientations are sampled, and in the ”2-step Monte
Carlo” the lamination parameters are sampled based on the distribution obtained in the
first step of the two-step approach. The results of these analyses are summarized in table 2
and in figure 3. For the cumulative distribution plots of the FOSM and ISOA results, the
RF is assumed to be normally distributed.
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Figure 3: Cumulative distribution function of the reserve factor for the analytic example with load case
A (left) and load case B (right)

For load case B, all results are in good agreement, which indicate that the proposed
method is valid. For load case A, the results obtained from FOSM and ISOA differ from
the ones given by the Monte Carlos simulations. This deviation does not originate from
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the two-step procedure or from the embedded optimization for evaluating material failure,
because the 2-step Monte Carlo uses the same approach as FOSM and ISOA. Hence,
the deviation must originate from the underlying assumptions of FOSM and ISOA, i.e.
linear/quadratic objective function and Gaussian distribution of the objective function.

4.2 Numerical objective function

The example considered is the stiffened composite panel investigated by Nagendra et
al. [13]. The dimensions, the laminate stackings and material properties are summarized
in table 3 and table 4. The panel is subject to axial loading (in direction of the stringers).
The loaded edges are clamped, and the longitudinal edges are simply supported.

Figure 4: Postbuckling pattern of the considered stiffened composite panel

The finite element model shown in figure 4 consists of linear shell elements with reduced
integration. The lowest buckling load, which for this panel corresponds to local skin
buckling, is determined by a linear eigenvalue analysis. The onset of material failure in
the post-buckling regime is determined in a displacement driven, nonlinear analysis with
artificial stabilization, using the Hashin criterion [15].

The panel skin buckles locally (no stringer buckling) before the first material failure
occurs. As the load increases, the panel buckles globally, accompanied by a drop in the
load-displacement curve given in figure 5.

The two-step probabilistic analysis is carried out for both, the skin buckling load and
the onset of material failure using FOSM and ISOA. All stringers are assumed to have
the same random stacking sequence. Hence, the scattering ply orientations are described
by 12 lamination parameters for the skin and 12 lamination parameters for the stringers,
leading to 24 random parameters. For the central difference steps for FOSM and ISOA,
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Table 3: Characteristics of the panel considered, from [13]

dimensions
panel length 762mm
panel width 812.8mm

stringer spacing 203.2mm
stringer foot width 60.96mm

stringer flange height 82.55mm

stacking
skin stacking [±45, 904, (±45)5]s

stringer stacking [(±45)4, 02, (±45)2, (04,±45)3, 02]
ply thickness 0.132mm

Table 4: Material properties used for the panel analyses

stiffness properties from [13] strength properties from [14]
E11 127553.8N/mm2 XT 2326.2N/mm2

E22 11307.47N/mm2 XC 1200.1N/mm2

ν12 0.3 YT 62.3N/mm2

G12 5998.48N/mm2 YC 199.8N/mm2

SL 92.3N/mm2
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Figure 5: Axial load over end shortening of the perfect panel
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Table 5: Results of the probabilistic analyses of the Nagendra panel in N

mean BL stdv of BL mean MFL stdv MFL
Monte Carlo 1461 8.7 2625 17.7

FOSM 1458 8.4 2622 9.2
ISOA 1459 8.5 2626 10.2

24×2+1 = 49 nonlinear finite element (FE) simulations are performed. Each FE analysis
took approximately 2 hours including the automated post-processing, which is very time
consuming due to the large number of plies for which the failure criterion had to be
evaluated. For validation a Monte Carlo simulation with 200 realizations is carried out
following the one-step approach. The results are summarized in table 5 and figure 6. The
distribution of buckling loads show good agreement where a certain deviation is found for
the distributions of the material failure load. For both structural responses, the scatter
is extremely small.
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Figure 6: Cumulative distribution function of the linear buckling load (left) and material failure (right)
of the stiffened panel for different approaches

5 CONCLUSIONS

A two-step procedure is presented that allows using lamination parameters for prob-
abilistic analysis of buckling load and material failure load of composite structures with
scattering ply orientations. In difference to directly considering ply orientations as ran-
dom parameters, the two-step procedure require a couple of additional steps that need to
be implemented. It however allows a huge efficiency gain if the following conditions are
fulfilled:

1. the number of plies is considerably larger than 12,

2. the evaluation of the objective function (e.g. buckling load, material failure) is very
expensive,
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3. the computational cost of the probabilistic approach depends on the number of
random parameters.

In the example with numerical objective function, the computational time is only
driven by the number of finite element simulations. The two-step approach required 49
FE simulations, where the Monte Carlo simulation required 200 simulations, which is still
a relatively small sample size for Monte Carlo.

In some cases, the two-step approach using FOSM or ISOA showed a certain deviation
from the direct/one-step Monte Carlo simulation. From the analytic example it is seen
that this deviation originates from the assumptions of FOSM and ISOA, but not from
the two-step approach.

In all examples considered, the scatter of the response is very small even though the
scatter of ply orientations was chosen realistically. In probabilistic analyses, which incor-
porate multiple random parameters, the influence of scattering ply orientations might be
negligible. This is subject of future investigation, because to the authors knowledge all
publishes probabilistic analyses of composite structures considered component with much
fewer layers.

APPENDIX

Lamination parameters are defined as

ξA[1,2,3,4] = 1
h

h/2∫
−h/2

[cos(2ϕ), cos(4ϕ), sin(2ϕ), sin(4ϕ)]dz

ξB[1,2,3,4] = 4
h2

h/2∫
−h/2

[cos(2ϕ), cos(4ϕ), sin(2ϕ), sin(4ϕ)]z dz

ξD[1,2,3,4] = 12
h3

h/2∫
−h/2

[cos(2ϕ), cos(4ϕ), sin(2ϕ), sin(4ϕ)]z2 dz

(4)

For a discrete layup, lamination parameters are determined from

ξA[1,2,3,4] = 1
h

n∑
i=1

[cos(2ϕi), cos(4ϕi), sin(2ϕi), sin(4ϕi)]tp,i

ξB[1,2,3,4] = 4
h2

n∑
i=1

[cos(2ϕi), cos(4ϕi), sin(2ϕi), sin(4ϕi)]zi tp,i

ξD[1,2,3,4] = 12
h3

n∑
i=1

[cos(2ϕi), cos(4ϕi), sin(2ϕi), sin(4ϕi)](z
2
i tp,i +

t3p,i
12

)

(5)

The entries the stiffness matrix (ABD matrix) are determined by
A11

A22

A12

A66

A16

A26

 = h


1 ξA1 ξA2 0 0
1 −ξA1 ξA2 0 0
0 0 −ξA2 1 0
0 0 −ξA2 0 1
0 1

2
ξA3 ξA4 0 0

0 1
2
ξA3 −ξA4 0 0




U1

U2

U3

U4

U5

 (6)
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B11

B22

B12

B33

B13

B23

 =
h2

4


0 ξB1 ξB2 0 0
0 −ξB1 ξB2 0 0
0 0 −ξB2 0 0
0 0 −ξB2 0 0
0 1

2
ξB3 ξB4 0 0

0 1
2
ξB3 −ξB4 0 0




U1

U2

U3

U4

U5

 (7)

and 
D11

D22

D12

D33

D13

D23

 =
h3

12


1 ξD1 ξD2 0 0
1 −ξD1 ξD2 0 0
0 0 −ξD2 1 0
0 0 −ξD2 0 1
0 1

2
ξD3 ξD4 0 0

0 1
2
ξD3 −ξD4 0 0




U1

U2

U3

U4

U5

 (8)

Here, h is the total laminate thickness and the vector U is determined from the stiffness
matrix of a unidirectional ply.

U1

U2

U3

U4

U5

 =
1

8


3 3 2 4
4 −4 0 0
1 1 −2 −4
1 1 6 −4
1 1 −2 4




Q11

Q22

Q12

Q66

 (9)

with

Q11 = E11

1−ν12ν21 Q22 = E22

1−ν12ν21
Q12 = ν12Q22 Q66 = G12 ν21 = ν12

E22

E11

(10)

REFERENCES

[1] B. Kriegesmann, R. Rolfes, C. Hhne, and A. Kling, “Fast Probabilistic Design Proce-
dure for Axially Compressed Composite Cylinders,” Composites Structures, vol. 93,
pp. 3140–3149, 2011.

[2] H. Fukunaga and G. N. Vanderplaats, “Stiffness Optimization of Orthotropic Lam-
inated Composites Using Lamination Parameters,” AIAA Journal, vol. 29, no. 4,
pp. 641–646, 1991.

[3] M. Miki and Y. Sugiyamat, “Optimum Design of Laminated Composite Plates Using
Lamination Parameters,” AIAA Journal, vol. 31, no. 5, pp. 921–922, 1993.

[4] J. E. Herencia, P. M. Weaver, and M. I. Friswell, “Optimization of Long Anisotropic
Laminated Fiber Composite Panels with T-Shaped Stiffeners,” AIAA Journal,
vol. 45, no. 10, pp. 2497–2509, 2007.

11



Benedikt Kriegesmann and Jannik Manderla

[5] B. Kriegesmann, “Closed-Form Probabilistic Analysis of Lamination Parameters for
Composite Structures,” AIAA Journal, vol. 55, no. 6, pp. 2074–2085, 2017.

[6] S. T. Ijsselmuiden, M. M. Abdalla, and Z. Grdal, “Implementation of Strength-Based
Failure Criteria in the Lamination Parameter Design Space,” AIAA Journal, vol. 46,
pp. 1826–1834, July 2008.

[7] S. W. Tsai and H. T. Hahn, Introduction to Composite Materials. CRC Press, 1980.

[8] A. Haldar and S. Mahadevan, Probability, Reliability and Statistical Methods in En-
gineering Design. New York ; Chichester England: John Wiley & Sons, 1. auflage ed.,
Nov. 1999.

[9] C. G. Diaconu and H. Sekine, “Layup Optimization for Buckling of Laminated Com-
posite Shells with Restricted Layer Angles,” AIAA Journal, vol. 42, pp. 2153–2163,
Oct. 2004.

[10] A. Manan and J. Cooper, “Design of Composite Wings Including Uncertainties: A
Probabilistic Approach,” Journal of Aircraft, vol. 46, no. 2, pp. 601–607, 2009.

[11] C. Scarth, J. E. Cooper, P. M. Weaver, and G. H. C. Silva, “Uncertainty quantifica-
tion of aeroelastic stability of composite plate wings using lamination parameters,”
Composite Structures, vol. 116, pp. 84–93, Sept. 2014.

[12] S. W. Tsai and E. M. Wu, “A General Theory of Strength for Anisotropic Materials,”
Journal of Composite Materials, vol. 5, pp. 58 –80, Jan. 1971.

[13] S. Nagendra, D. Jestin, Z. Grdal, R. T. Haftka, and L. T. Watson, “Improved Genetic
Algorithm for the Design of Stiffened Composite Panels,” Computers & Structures,
vol. 58, no. 3, pp. 543–555, 1996.

[14] P. Camanho, P. Maim, and C. Dvila, “Prediction of Size Effects in Notched Laminates
Using Continuum Damage Mechanics,” Composites Science and Technology, vol. 67,
pp. 2715–2727, Oct. 2007.

[15] Z. Hashin, “Failure Criteria for Unidirectional Fiber Composites,” Journal of Applied
Mechanics, vol. 47, pp. 329–334, June 1980.

12


