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Abstract. Results are reported from wall-modelled large eddy simulations (WMLES) of
a zero pressure gradient flat-plate turbulent boundary layer (TBL) flow performed using
unstructured computational meshes. In particular, two meshes are considered: a hex-
dominant and a polyhedral. The resolution of the meshes is kept constant with respect to
the local thickness of the TBL. The WMLES predictions are evaluated by comparison with
reference data from direct numerical simulation (DNS) and semi-empirical expressions for
the development of integral quantities along the TBL. Good agreement is observed for
the skin friction coefficient, mean streamwise velocity and the Reynolds stresses. Also,
the influence of the location of the sampling (matching) point of the employed algebraic
wall-stress model is investigated. It is found that moving the sampling point to the third
consecutive off-the-wall cell centre leads to a significant improvement in the prediction of
the mean wall shear stress, as opposed to sampling for the wall-adjacent cell.

1 INTRODUCTION

The number of applications of LES, and other scale-resolving approaches, such as de-
tached eddy simulation and different forms of RANS-LES hybrids, is steadily increasing
in applications [26, 25]. Wall-resolving LES (WRLES), in which the energetic flow struc-
tures in the inner part of the TBL are resolved, puts excessive requirements on the mesh
resolution, see e.g. [27, 13]. The fundamental motivation for WMLES is alleviating these
requirements by modelling the effect of the inner region of the TBL, and only resolving
the energetic structures in its outer region [21, 11].

A large number of works on WMLES of canonical flows has been published, in particu-
lar, on fully-developed turbulent channel flow, see e.g. [18, 20, 22]. Somewhat surprisingly,
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the number of applications of WMLES to more complex geometries is quite limited [4].
Examples of studies that have been reported in the literature include simulations of airfoils
at large angle of attack [5, 3, 19], and of flow around a car [1].

In the present paper, a complete WMLES approach, also applicable to complex ge-
ometries, is described and evaluated in terms of its predictive accuracy for a zero pressure
gradient TBL over a flat plate. The main feature of the approach is to adapt the mesh
resolution to the local TBL thickness, δ. This is achieved through unstructured mesh
generation based on an a-priori estimate of δ over the wall surface. For the flat-plate
case, this estimate is obtained by the application of a power law for the growth of the
thickness along the plate. For a complex geometry, it can be obtained by a preliminary
RANS simulation of the flow.

The CFD framework employed is a second-order accurate finite volume discretisation,
on meshes consisting of arbitrary polyhedral cells. The mesh-cell topology has an im-
portant impact on the accuracy of WMLES, and the requirements on mesh quality are
high. The conducted simulations show that the here proposed meshing strategy results
in meshes adhering to these requirements. With respect to the cell topology, two options
are considered: a hex-dominant mesh and a polyhedral. Both are shown to lead to ac-
curate results. Furthermore, the procedure for velocity sampling for the wall model is
emphasised. The conventional approach, see e.g. [6], employs the wall-adjacent cell layer
for this purpose. Here, this is compared to sampling velocity further away from the wall,
and it is shown that this leads to a significant improvement of the predictions.

The article is structured as follows. Section 2 details the employed computational fluid
dynamics methods. In Section 3 the conducted numerical experiments are presented, in-
cluding the description of the meshing strategy, the case set-up, and the results. Section 4
summarises the work and gives concluding remarks.

2 COMPUTATIONAL FLUID DYNAMICS METHODS

The LES equations are obtained by applying a low-pass filter to the Navier-Stokes equa-
tions. Assuming incompressible flow and commutativity between filtering and derivation,
the filtered equations are as follows.
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+
∂
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(vivj) = −1

ρ

∂p

∂xi
+ ν

(
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∂vj
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Here, the overbar is used to indicate that the variable is filtered, vi are the components
of velocity, p is the pressure, ρ is the density of the fluid, and ν is its kinematic viscosity.
The term τ sgsij is the subgrid stress tensor and, in on order to close the system of equations,
it has to be modelled. In this work, the WALE model [17] is employed to that end.

All computations have been performed using the open-source general-purpose CFD
software OpenFOAM. It employs the collocated finite volume method for discretisation and
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supports arbitrary polyhedral cells. Interpolation is required to obtain the values of
the unknowns at the cells’ face centres. To that end, linear interpolation is used when
addressing the diffusive terms in (1), and the LUST scheme [29, 15] is adopted for the
convective term. Both schemes are second-order accurate. For discretisation in time, a
backward-differencing scheme is used, also second-order accurate, see [9]. The governing
equations (1) are solved in a segregated manner, using the PISO algorithm [8]. Three
pressure-correction steps are performed at each time-step.

An algebraic wall-stress model based on Spalding’s law [28] is employed. The for-
mulation of the model within the framework of collocated finite volume discretisation
is discussed in detail in [14]. Implementation using OpenFOAM technology1 is presented
in [16]. The model attempts to account for the dynamics of the inner layer by enforcing
the correct local value of the wall shear stress at each face centre of the wall patch. This
is done in three steps. i) Sampling the value of the wall-parallel velocity from a cell centre
at a wall-normal distance, h, from the wall. An individual value of h is set for each wall
face prior to the simulation. ii) Computing the value of the wall shear stress using the
sampled velocity and Spalding’s law. The law acts as a non-linear equation, with the
wall shear stress being the unknown, and is solved using the Newton-Raphson method.
iii) Enforcing the computed wall shear stress at the wall. This is done by adding the
appropriate amount of subgrid viscosity at the wall face, see [14] for details.

3 NUMERICAL EXPERIMENTS

3.1 Case set-up

This section summarises the set-up of the simulations, excluding the used meshes,
which are discussed in the section below. The triple x, y, z will be from here on used to
denote the streamwise, wall-normal, and spanwise directions, respectively. A summary of
the simulation parameters is given in Table 1.

The computational domain is a box of size Lx = 2 m, Ly = 1 m, Lz = 0.2 m along
the respective coordinate axes. The two latter dimensions should be compared with the
maximum value of the thickness of the TBL, δmax ≈ 0.03 m, giving Ly/δmax ≈ 33.3 and
Lz/δmax ≈ 6.7. These values are large enough to avoid loss of accuracy due to the imposed
boundary conditions, which are as follows.

At the wall (y = 0), the no-slip condition is applied. At the inlet (x = 0) a uniform
velocity, U0 = 20.4 m/s, is prescribed. At the outlet (x = Lx), the pressure is prescribed
to be zero and a Neumann condition is used for the velocity. The top boundary is treated
as a symmetry plane. Finally, periodic boundary conditions are used on the left and right
sides of the domain (z = 0 and z = Lz).

In order to facilitate the transition of the boundary layer to fully turbulent state,
numerical tripping is introduced. This is done by adding a source term to the momentum
equation, which is active only within a short strip of cells located shortly downstream of
the inlet (x = 0.1) and the magnitude of which is randomised in space and time. The
strip stretches across the whole domain in the spanwise direction, but is limited to 20 cm

1Source code available at https://bitbucket.org/lesituu/libwallmodelledles.
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and 3 mm in the streamwise and wall-normal directions, respectively.
After initial transients are removed from the domain, averaging in time is performed

during a period of 0.245 s, which corresponds to about 2.5 flow-through times, defined as
Tft = Lx/U0. The time-steps of the simulations are 4 µs and 5 µs for the polyhedral and
paved mesh (see below), respectively.

Two simulations on each mesh are performed, which differ in the way the sampling
point of the wall model is chosen. In one simulation, the centre of the wall-adjacent cell
is used for sampling. In the other, the centre of the third consecutive off-the-wall cell is
used instead.

Table 1: Simulation parameters.

Quantity Notation Value
Length of the domain Lx 2 m
Height of the domain Ly 1 m
Width of the domain Lz 0.2 m
Free-stream velocity U0 20.4 m
Kinematic viscosity ν 1.65 · 10−5 m2/s
Flow-through time Tft ≈ 0.1 s
Time-averaging period Tavrg ≈ 0.245 s
Time-step, paved mesh ∆tpaved 5 · 10−6 s
Time-step, polyhedral mesh ∆tpoly 4 · 10−6 s

3.2 Meshing strategy

This section discusses the two computational meshes used in the study. Both meshes
are constructed using the same strategy, which relies on a-priori knowledge of the thickness
of the boundary layer, δ, as a function of x. For the TBL, δ(x) can be estimated using a
power-law relation [23]. It was considered that the boundary layer achieved fully turbulent
state at x0 = 0.4. Consequently, for x > x0, δ is computed using the power law estimate,
and upstream a constant value of δ = δ(x0) is employed.

The domain to be meshed can be roughly divided into two regions: the one occupied
by the boundary layer and the one with the free stream. The goal is to generate a high-
quality unstructured mesh for the boundary layer region, with the resolution of the mesh
adapted to the local value of δ(x). The free stream region can then be covered with
significantly coarser cells.

The meshing is performed in three steps. First, the surface of the wall boundary is
meshed. This is done in such a way, that the average distance between the cell centres,
d, is maintained as a specified fraction of the local value of δ(x). In particular, here
δ/d ≈ 15.5 is employed. This is consistent with recommendations for the resolution of a
WMLES mesh found in the literature [27, 11]. Note that since δ grows in the streamwise
direction, the density of the surface mesh is highest near the inlet and gradually decreases
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towards the outlet, see Figure 1. The same figure also shows the average cell size in
wall-units, d+. Near the inlet, d+ is ≈ 25 and reaches ≈ 80 at the outlet.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

25

50

75 0.1Lz/d
d +

Figure 1: The number of cells across the spanwise direction of the plate (blue line), and the size of cells
in wall units, d+ (orange).

The second step in the meshing strategy is to extrude the generated surface mesh in
the wall-normal direction. The extrusion is performed by building layers. A total number
of 16 layers is built, and the thickness of each layer at a given streamwise location is set
in such a way that the height of the extruded mesh matches the local value of δ(x). As
a result, the wall-normal resolution of the grid with respect to δ(x) matches that of the
surface mesh.

As a final step, the rest of the domain is meshed using a significantly coarser mesh,
with rapid increase of the cell size in the wall-normal direction. The result of applying
this meshing strategy is shown in Figure 2.

Figure 2: Structure of the two meshes used in the simulations: paved (left) and polyhedral (right). The
surface mesh, the extruded layers, and the coarse mesh above the TBL are visualised. For the paved
mesh, the AMI is also shown.

The two constructed meshes differ in the topology of the cells that constitute them.
The first mesh, referred to “paved” below, uses a quad-dominant surface mesh, see the
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left plot in Figure 2. Consequently, the extruded layers are hex-dominant. The region
above the TBL is meshed with a structured hexahedral mesh. In order to connect it to
the layers extruded from the surface, a so-called arbitrary mesh interface (AMI) is used,
which allows to couple two non-conforming regions of a mesh across a defined surface.
The second mesh, referred to as “polyhedral”, uses polygons to discretise the wall-surface,
see the right plot in Figure 2. The polygons are obtained as a dual of a triangulation.
Above δ, an unstructured polyhedral mesh is used, alleviating the need for an AMI.

The sizes of the constructed paved and polyhedral meshes are Npaved ≈ 15.5 · 106 and
Npoly ≈ 14.4 · 106, respectively. Considering only the region occupied by the TBL brings
the figures down to NTBL

paved ≈ 14.7 · 106 and NTBL
poly ≈ 12.9 · 106. It is interesting to compare

these mesh sizes to that required for a wall-resolved simulation of the same case. Consider
a structured hexahedral mesh, with uniform cell sizes ∆x+ = 20 and ∆z+ = 10 in the
wall-parallel directions, where the scaling is done with values of δν taken at x = x0. This
results in 1000 cells across Lz and 5000 cells across Lx. If δ(x) is discretised with 50 cells,
the number of cells in the TBL region amounts to 250 · 106, which is 17 times larger than
the paved WMLES mesh. Note that adapting ∆x+ to the local value of δν would not
result in a significant change in the estimate, because δν grows only by a factor of ≈ 1.15
over the interval [x0, Lx]. By comparison, δ grows by a factor of ≈ 4.

3.3 Results

This section presents the simulation results, a selection of which is also made available
online2. Attention is first drawn to Figure 3 visualising the resolved structures in the TBL.
The effect of the numerical tripping is clearly seen, the first structures appearing in the
box where the tripping is active. The growth of the TBL is evident and, correspondingly,
the growth in the size of the largest resolved structures.

Figure 3: Resolved turbulent structures visualised by an iso-surface of the second invariant of the velocity
gradient, coloured by streamwise velocity.

This growth is further quantified in Figure 4, which shows the development of the
momentum thickness-based Re-number as a function of the streamwise coordinate. In
addition to the simulation results, an estimate obtained from a power-law proposed in [23]
is shown. All four simulations show acceptable agreement with the estimate, but the

2DOI: 10.6084/m9.figshare.6061298
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simulation employing the polyhedral mesh and sampling from the third off-the-wall cell
clearly performs best.
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Figure 4: Development of the momentum thickness based Reynolds number, Reθ.

The skin friction coefficient, cf , is shown as a function of Reθ in Figure 5. DNS
data from [24] and a power-law estimate from [23] are used as reference. After a short
transient period, all four curves behave similarly to the benchmark data. However, the
values obtained from the two simulations employing sampling from the third off-the-wall
cell are in significantly better agreement with the reference.
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Figure 5: Development of the skin friction coefficient, cf .

The under-prediction in cf exhibited by the simulations using sampling from the wall-
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adjacent cell entails that they under-predict the mean wall shear stress, 〈τw〉 (by definition
of cf ). This is further demonstrated in Figure 6, which shows inner-scaled profiles of the
mean streamwise velocity for selected values of Reθ. DNS data [24] is used as reference.
It is observed that all four simulations predict similarly-shaped profiles, but those from
the simulations with sampling from the wall-adjacent cell are shifted along the ordinate.
Thus the value of 〈uτ 〉 =

√
〈τw〉/ρ in these simulations is under-predicted. The overall

agreement of the profiles with DNS data is good, although they exhibit a very pronounced
log-layer which is not present at these relatively low Re-numbers. The best accuracy is
achieved with the paved grid, using sampling from the third off-the-wall cell.
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Figure 6: Profiles of the mean streamwise velocity at three different downstream locations, corresponding
to Reθ ≈ 1420, 2000, and 2540, respectively. Black solid lines show DNS data [24], other lines are as in
Figure 5.

Figure 7 shows the profiles of the Reynolds stresses for three selected values of Reθ.
The level of agreement with DNS data is acceptable and typical of WMLES. The observed
errors, such as the over-prediction and shift away from the wall of the peak value of urms

are common for LES on coarse meshes in general [2]. Arguably, the results obtained with
the paved mesh are slightly better than those obtained with the polyhedral.

4 CONCLUSIONS

Results from WMLES of a zero pressure gradient TBL over a flat plate are presented.
The simulations are performed on unstructured meshes of two types: hex-dominant
(paved) and polyhedral. The meshes are carefully constructed to preserve the density
of the mesh with respect to the thickness of the TBL. The quality of the meshes is high
enough to allow using second-order accurate schemes for discretising the governing equa-
tions. Further, two locations for sampling velocity values for the employed algebraic wall
model are tested: the wall-adjacent cell and the third consecutive off-the-wall cell.

The results show convincingly that the employed meshing strategy, in conjunction with
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Figure 7: Profiles of the Reynolds stresses at three different downstream locations, corresponding to
Reθ ≈ 1420, 2000, and 2540, respectively. Black solid lines show DNS data [24], other lines are as in
Figure 5.

the employed numerical methods, is suitable for WMLES. It is emphasised that while the
geometry of the considered flow is simple, the developed methodology is fully applicable
to complex geometries. Using both the paved and the polyhedral mesh led to an overall
similar level of accuracy of the solution. The polyhedral grid was superior in predicting
the values of Reθ and cf (see Figures 4 and 5), but the paved grid gave slightly better
predictions of the mean streamwise velocity and the Reynolds stresses (Figures 6 and 7).

Using the wall-adjacent cell is shown to lead to an under-prediction of the mean wall
shear stress by ≈ 20%. In line with what has previously been reported in the literature [10,
12, 7, 16], moving the sampling point further away from the wall results in a significant
improvement. In particular, no log-layer mismatch is observed for the mean streamwise
velocity, as compared to the DNS data.
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