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Abstract. We present a spatially High Order cell-centeradt&iVolume method based on a
WLSQ reconstruction of the conservative variablesh@ components of the flux density
tensor [1]. These reconstructed polynomials argepted on the cell interfaces to compute the
fluxes. The weight distribution in the WLSQ permits obtain a stable scheme without the
need for a posteriori limiting the higher orderidatives of the reconstructed fields.

The face projected fields and their normal derixegican then be associated with the most
robust existing flux schemes [2], eventually deglimith discontinuous solutions for shock
capturing.

Accurate expressions also of the wall boundary tmm$ enable to reach high grid
convergence indices for transonic and supersoone domputations around wing profiles.

The formulation could be extended to high ordedgim a very CPU efficient way.

These novel features, in subsonic, transonic apérsonic situations, could be compared
with the element-based spatially HO reference nasH{®G, Flux Reconstruction, stabilized
CG,...) and standard"®Order FV formulations, during the editions of tHggh Order CFD
Workshop [3] and during Onera solver cross compargojects.

1 INTRODUCTION

Stable and accurate flux integration methods ottrucisired grids are needed for robust CFD
solvers. In the context of cell-centered Finite Wk, the polynomial reconstruction of the
fields of conserved or primitive variables over adev source stencil by Least-Squares
methods is the basis for a number of developmeéitpl] [5]. In the projection phase of the
NXO numerical scheme, the reconstructed solutionbsaevaluated in a number of ways:
* at nodal face integration points, where dual-valoedservative variables from left
and right-biased stencils serve as an input fapgoroximate Riemann solver,
* as a surface integral on these interfaces, fonglesiface evaluation of the fluxes
from interface-averaged conservative variables,
* as avolume average of the field on some targetrcah overset grid problem.
This cell-centered Finite Volume method also maksss of an optional formulation where
the reconstructed fields are not the conservatamaliles, but the components of the flux
density tensor of each conservation equation. Ttheténsor has a non-linear expression as



Jean-Marie Le Gouez

function of the conservative variables in all equag, except for the mass conservation. Its
spatial reconstruction limits the overall asymmtatrder of the scheme to 3, but it was shown
in [1] that much higher grid convergence indicess ba obtained with this scheme on grids of
moderate refinement, and the entrance of the scheimehe asymptotic regime is obtained

with a coefficient of the leading error term thatreduced by several orders of magnitude
when compared to standar¥f Brder FV methods.

The computations presented here use the flux getesisor reconstruction algorithm up to
the fifth order, associated to a face-centered cgteand stabilized by first-order and
eventually a blend of*t and &-order grid difference operators across the intexfas in the
JST scheme [2].

All coefficients of the linear combinations towarttse interfaces are computed in the
geometric preprocessor, they include an a priabiBtation feature that enhances the
diagonal dominance of the overall scheme, by udasy decaying weights towards the
periphery of the stencil, in the Weighted Least&gqueconstruction.

This scheme was applied on high order grids madéadle at the 8 and 4' HO CFD
workshops, for the shock-free cases of the Rinfitet» and a subsonic bump [6].

Application examples dealing with supersonic arahgonic flows around aerodynamic
profiles are presented; they concern a Bow shamk fa flow at Mach 4 encountering a flat
plate with rounded edges, which is also a test frase the HO workshop, and Mach 0.8 and
0.95 flows around a NACAQ0012 profile.

For this last case the expression of the wall bamnhdcondition was improved to
interpolate within the wall stencils only over qtitas that are more continuous across
shocks. This enabled gains in accuracy in the varag exceeding 1 order of magnitude on
the reference grids that were formerly used fodiswith 2nd order FV solvers.

2 MAIN FEATURES OF THE SCHEME

2.1 High-order spatial integration of the fluxesover a curvilinear interface

Achieving a high space order in the Navier-Stokesemes should permit to reduce
drastically the number of cells in a grid to reactarget accuracy. At the walls in particular, it
cells with curved boundaries must be used to reptgzoperly the wall geometry.

With these grids that are still more refined in tal normal direction in order to properly
resolve the boundary layers, the curvature of #ikefaces at the wall needs to be propagated
inside the grid. A full formulation of the FV schemon HO grids is found necessary, besides
curved wall HO boundary conditions. In a first stégr the reconstruction itself, curvilinear
integration is used for the volume integrals of t@nomials that serve for the WLSQ.

The HO fluxes integration is then expressed in ftiiwing way, by introducing the

componentd ,9,h of the inviscid and diffusive flux density tensaasd the unit normal

vectorV (X Y, Z)varying across the interface:

ow  o(fi —f,) , 0(g-9,),0h-h) _, (1)
ot oX oy 0z
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After integration on a cell of volum& enclosed in a discrete set of bounda@@g, with

the volume average of a field represented by ambaveand the surface average represented
by an overhat,

O(QW)+i §(|EI - ﬁv - 'Ei,diSS)' udS=0

2
ot =y (2)
f f,
with F=9 , F =9 the natural inviscid and diffusive quer; diss the added

h h,

artificial dissipation, computed from the first dodthird order grid difference across the
interface and discussed in the next section.
We compute in the preprocessor the arf@ythat relates the discrete fields in the stencil to

the coefficients of the reconstructed polynomidl [lhen we evaluate, component-wise and
with the desired numerical accuracy, the face natiegf the unit normal vector multiplied by

ivi7k mHC — =
the monomials of the base a§ XY'Z" 0dS = TG (3).
aQ,

The curvilinear flux integral is expressed as adincombination over the stencil of the
discrete components of the flux density tensor:

§(ﬁ - 'EV)' uds = Z 7T{ijk} {K{ijk},c(éi - év)c:|

09, c=1nc
nc
- L _ (4)
= Z[ac(fi - fv)c +:8c(gi - gv)c +yc(hi _hv)c]
=1
We need to store after the preprocessor, on edelfaoe, the coefficients of the linear
combinationgr, 8,y , computed from the product df andﬁ , to obtain at a low CPU cost
the flux curvilinear integrals for each equatiorttud NS system at each iteration of the solver.

2.2 Extension of the JST scheme at High Order adO grids

We concentrate here on the inviscid fluxes of tbeegning equations. The scheme used is a
centered scheme close to the JST scheme [2], witlral inviscid fluxes and an artificial
dissipation with a shock detector. The 5 conseomatiquations in 3D are written:

@-‘-;Sﬂ(ﬂ,nm - fi,diss)n =0 =15 (5)

with V_V:éijdv W =[p,umv0m ] and ﬂ%fsffids
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.i:\ + .i:\ ZAleft,s fi,s + zAright,s fi,s
f — ileft i,right _ SO, left 1, right
» linat T 2 - 2 (6) is the mean of the

~

reconstructed and face projected normal fluxekencells of the left and right stencil.

> fas =& wéW —&, C‘)WW (7) is the artificial dissipation at high erd
where V\,f uses the total enthalpy rather than the total gnerghe energy equation,

:[p,plj,p\/,,alv,m]T. 5VV,* is an evaluation at high order of the first grid

AAAN

normal difference OW over the interface anm that of the third difference.

‘uSX +VS,
w:W *a js the highest module of the eigenvalues of the flacobian at the

interface, computed from the stencil average oteorative variablesa the speed of sound.

The grid differences in the standard JST schemeakiated by a 2 point formula for the
first difference and a 4 point formula for the thgrid difference. The high order evaluations
of the grid differences chosen here use the firel ¢hird normal derivatives of the
reconstructed polynomials, which are polynomialghea coordinate normal to the interface,
and of degrees k-1 and k-3.

The coefficients of these polynomials are multippéshose of the direct reconstruction
ones, combined with the components of the unit mbwectow :[vx Vy vz]T . All cells in

the stencils are involved in the grid-normal diflece formulas, which are linear
interpolations over the whole stencil and extendiradly to arbitrary unstructured grids.

2.3 Improved wall boundary condition for transoric applications

A special processing is introduced in the sterailgcent to the walls for transonic cases,
in order to improve the quality of the reconstractiover the wall stencils containing the
shock. In all wall stencils, we choose to recordttbe spatial variation of the « lagrangian »

fluxes, i.e. the projection of the flux density $en components of each equatilﬁlmn the unit
. o 7 T
vector in the direction of the velock) = [U \ W] :

oW, , of, , 09 ,oh _, 4, = iurgyThw
For each equatlonat OX oz , we introduce¥k \/U2+V—2+WZ (8)

These fields, computed in all the cells of the veiincils as shown on figure 1, hold a
higher continuity over the shocks than the congemavariables or the face-normal fluxes
(wall-normal here) used for the standard reconstrns presented before.

After computing through the “NXO extrapolation” theall face average of the fielg
there remains, in order to apply the wall b.cextract the pressure from these.
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Maillage 256128 stencils k4 dans le champ, k2 en pargi
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Figure 1: Reconstruction of flux densities in the directimfrthe global face normal or the local velocityctgs

The values ¢k are interpreted as the fluxes in the direction of the unit velocity vector at the

= _ t
walll = (TX; Tys Tz) . This vector is evaluated independently from the “NXO

extrapolation” of the unit velocity vectors in the stencil; it is not imposed to be tangent to the
wall. In order to solve for the wall pressure, this vector is also not imposed to be aligned with
the wall velocity in the next equations (equation set (9) holds for any unit vector).

The quantities ¢k are related to the primitive variables by the following equations:

¢1 :AUTX +Vry +Wrz)::ajr ¢2 =pu ut p*rx ¢3 =PV p*ry
2 \,2 *
" u% +V2 W
¢4 = A, W+p I; ¢5 = Ay h h = 2 + yzl% ©)

After eliminating 0,U,V,W,h, from these 6 equations, we obtain an equation of second
degree for the pressure:

*2 *
(y+)p” -2 (p,1,+ g7, + 8,7,)+ (V- D(28,0,- 93 - 92 - $2)=0 (o)
This equation provides 2 roots that corresponda@sgely to a subsonic and a supersonic

state. The selection between these is done fronditeet extrapolation of the conservative
variables to the wall to obtain the Mach number exgress the compatibility relationship [6].

3 SHOCK-FREE VERIFICATION CASE OF A SMOOTH INVISCID BUMP

This 2D test case of a subsonic flow about a Ganssihaped bump is provided by the High
Order CFD workshop [7] with a series of 5 imposedrtjc grids.
It was computed with the curvilinear reconstructionl integration scheme of section 2.1.
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Three different degrees for the (k-exact) polyndmépresentation of the flux density
tensor where used. The degree of reconstructiarcesdin the stencils close to the boundaries
from the one imposed in the center of the domales€ levels of accuracy were: k=1, which
is close to an unlimited and really 2D MUSCL-typéerpolation, k=2.25 (k=2 for 80% of the
stencils and k=3 for 20%), k=3.15 (3 for 90% of ghencils and 4 for 10%).

The notion of “really 2D” refers to the fact thdtet reconstruction at any k order is a
unique polynomial in all space coordinates oveel&aentered stencil, and the evaluation of
this same polynomial is done at all the interfamfethe cell for upwind or centered schemes.

Figure 2: Field of density for the run on grid4: 3072 célsnumber of dof/equation)

The density field computed on grid 4 is shown g@ufe 2. Figure 3 presents the L2 norm of

the entropy error over the grids, as a functiommfaverage cell size. The grid convergence
index reaches 4.1 for the k=3+ scheme, which paawith the majority of the element-based

solvers which contributed to this test case.

k=1 NXO
k=2.25 NXO
k=3.15 NXO
O(1) Slope

Entropy Error

L s a —— — O(5) Slope

L N i n n |
0.02
1/sqri(DOF)

PRSI BT M. Fwwe |
0.04 006 0.08 0.1

Figure 3: L2-norm of entropy error over the grids

4 SUPERSONIC VERIFICATION CASE FROM THE 5 ™ HO CFD WORKSHOP [8]
(BOW SHOCK AT MACH 4)

This test case was to be computed on the 5 prowsttedtured grids [8], adapted to the
bow shock position for a referenc® ®rder FV solver. In order to calibrate the amooht
artificial dissipation and to compare it with tHf&TJscheme [2], the scheme of section 2.2 was
used on 1D stencils extending along the grid lioemal to the interface. The only monomials
of the base are powers of the normal coordinate.

The flow field and the coefficients of artificial dissipation are illustrated on figure 4.
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The preprocessing is done successively with cefiails of 5, 7 and 9 stencils enabling k-
exact reconstructions from k2 to k5. The exact wetle coordinates are used, so varying size
of the cells in the stencil is accounted for. Tlresponding face stencils used for the
artificial dissipation comprise 6, 8 or 10 celladaenable to reconstruct k3 to k5 polynomials.
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Figure 4: Fields of Mach number and coefficients 8% @rder and 4 order artificial dissipation (eqn. 7).
Bow Shock at Mach 4, grid 2: 22098 dof/egn

The main point that allows a higher accuracy isdtencil-reconstruction of face normal
fluxes rather than conservative variables. Thaseefl are continuous over the stencil across
normal shocks when the grid is fitted to them.
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Figure 5 Bow shock: Density (left) and total enthalpy (fighn the symmetry axis
Zooms at the stagnation point and at the shocloregi
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On figure 5 is presented the evolution of the solutalong the stagnation line, for the
density and the total enthalpy. These illustragegharpness of the density jump capture and
the convergence of the solution at the stagnatoomntp

The total enthalpy only departs from its referewalkeie in 2 cells across the shock.

The relative error at the stagnation point for tpintity is of the order of 10on all grids
except for the coarsest one.

5 TRANSONIC VERIFICATION CASE (MACH 0.8 AND MACH 0.95 FLOWS
AROUND A NACA0012 AIRFOIL)

Structured and unstructured grids are used. The ADBC2 profile was extended slightly
after x=1 until it closes without modifying its eafion. The NACA0012 profile was extended
slightly after x=1 until it closes without modifygrits equation.

The flow about a NACAO0012 airfoil at Mach 0.8 witlitancidence is computed on a series
of structured O-grids. These high quality grids thr@ not refined at the shock locations have
been created by A. Jameson and J. Vassberg forpitwgects, in particular [10]. They were
made available by them to ONERA for the projectoDestarac and his co-workers [11].
We acknowledge here their support and expresshanks.

These structured grids are interpreted as unstedtby the solver. Three successive
options of the NXO scheme have been used, all thé#ghreconstruction of normal components
of the flux density tensor at all faces but theraries:

a/ The expression on linear grids, with wall slgubdary conditions processed by the
HO extrapolation in the wall stencil of conservatiariables,

b/ The same scheme at inner faces, and a wall laoyncbndition based on the
reconstruction / extrapolation of “lagrangian” fesxin the wall stencils and resolution
of a second degree equation for pressure at tHgseation 2.3, eqn. 10),

c/ Same as b/, but with also a high order geometpcesentation of the wall face, as a
guartic Lagrange polynomial in space, obtained tgiray 3 supplementary definition
points for the profile at their exact coordinatathim each wall face.

Runs a/ were done on a series of grids of sizen t28*128 to 1024*1024, which had
previously been computed by ¥ 2rder cell-centred FV code at Onera.

The reconstruction k4 on a full 2d base was usetthenfield stencils, and k3 in the wall
ones (comprising 25 cells in the field and 16 atwhall, see figure 1).

The field of absolute error on the total enthaligydfis plotted on figure 6 (reference value
is 2.82). It is lower in the field than at the wallith an error spot at the shock location.

We present on figure 7, as squares for the fornomat/, the absolute error in drag with a
reference value Cx = 0.0083409 obtained from elsth the JST scheme, and the relative

H -H,.
error in total enthalpy at the wall, i.e. the camttegral along the profile LftHit‘

t,00
The grid convergence index for the drag error iétla better than 3.5, while the one for
the total enthalpy error is 1. The NXO solutiontba finest grid is 0.00834083.
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Figure 6: Field of total enthalpy absolute error for a 2ls6*128 (tangential / normal) Ht,w =2.82

COCON T1.1 Transonic test case
Naca0012 Euler Mach 0.8 incid 0° —=&— E(Ht) FV2nd
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1 2
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Figure 7: Error indices as function of the square roothef dof/eqn (average number of cells per direction)
NXO results a/: green squares, c/: blue and blackes, grids 181*91, 256*128, 362*181, 512*256igf B

The solution with the most accurate wall boundanydition c/ is shown on figure 8.

We have plotted here, along both sides of the arall with the cell index in abscissa, the 2
solutions of the equation of second degree forwhk pressure in green and blue, together
with the one that was retained, in red, based eretaluation of the Mach number.

The wall faces are numbered in clockwise order fitun trailing edge. The stagnation
point at center (i=128) is in the low subsonic zonih a corresponding supersonic solution
close to 0, then as we move downstream pressureadss and the flow becomes supersonic.

It is noticeable that the pressure gradient aldmg wall is continuous where the flow
becomes supersonic (i=105 and i=145), althoughreel@anging the choice of the root of the
second degree equation.

Then at the shock we switch again roots, withogessive wiggles near the shock.

The solution improvement, in drag and total enthalp plotted on figure 7 as triangles
and circles.
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Figure 8: Solutions of the equation of2degree. Wall pressure function of wall face index c/ 256*128.
Retained solution is in red; zoom at the shocktiooa

For the curve with black circles, drag computedhvitie model c/ is extrapolated for an
infinite fine grid to Cx*= 0.0083417 rather tharethIsA value of 0.0083409 used before. The
convergence rate for drag is 3.7, while the totdéhalpy error stalls.

The total enthalpy field of run c/, on a grid ofisge cells, is plotted on figure 9a, with now
a more continuous level of error inside the donaaid at the wall.

Finally we present on figures 9b the error tradethe relative total enthalpy error, in log-
scale, along the wall as function of the cell irdicfor the 3 runs on the grid of figure 9a
comprising 256*128 cells. Run a/ is in red, runnbgreen, and run ¢/ in blue.

The error levels of b/ and c/ are lower, excepthi@ supersonic zone, between the cell
faces 150 and 185, where the error in the initiatlet a/ drops near FOThe b/ and ¢/ models
are much more accurate across the shock and deanstit. The formulation with higher
order geometry representation only improves treastivise regularity of the solution.

The curvilinear integral of the relative error aral enthalpy on this grid is divided by a
factor 3 from model a/ to model d/,1 107 to 3.5 10™.

Relative error on total enthalpy at the wall
Grid 256*128

e ——— BC Conservatives
NXOHO Grid & Flux Reconstructed BC BC Flux

Grid HO + BC Flux

Relative error on total enthalpy
lach 0.8
NXO HO grid + Flux Reconst. BC

Total enthalpy relative error

| [T il
20 40 60 8 100 f0 140 160 180 200 20 240 20
Wall cell index

0 05 1

Figure 9: Run c/ 256*128. Relative error on total enthailpyhe field and at the wall: runs a,b, ¢/ 256*128

10
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A second series of runs was performed on the sarfel @t Mach 0.95, with fully
unstructured grids and stencils made of triangles. formulation a/ was used, since the flow
is supersonic along the wall, from 6% of chord, gats subsonic way downwind.

The meshes used here stem from an Onera projett thig hybrid (structured/
unstructured) version of elsA, where a goal-oridrgad adaptation method using the adjoint
of the unstructured solver was developed [12]-[13].

NXO Euler Triangles Maillage Naca12 adapte (elsA)
Mach 0.95 incidence 0 C7 :27959 ddl/eqn (129**2)

07k
06
05 E
04 F
03

02 E

0.1

-0.1

-02

-0.3

X

Figure 10 Pressure field for the NACA0012 transonic flowMedch 0.95. Grid C2_7 27959 dof/eqn

Although the spatial schemes of elsA and NXO ortructured grids strongly differ, the
grid adaptation algorithm is also driven by the siby of the flow and the error decreases fast
with the grid size. Figure 10 shows the grid refi@at zones related to global flow features.

NXO Euler Triangles
Maillage Naca12 adapte (elsA)
ch 0.95 incidence 0 10010(E(H0)
C7 :27959 ddlleqn (129**2) [ 3
E(Cd) =2.91e-06 E(Ht)=1.54e-04

Figure 11: Grid C2_7. Relative total enthalpy error (loglegaNACA0012 transonic flow at Mach 0.95
Representation of some stencils near the airfailrdtream edge

The error field on figure 11 takes low levels aldhg profile. The errors as function of the
mesh size are reported in table 1 and plotted gurdi 12. High grid convergence rates are

11
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evidenced on mid-size grids, owing to the grid aalégn algorithm. Errors in the wave drag
below 10° are obtained with only 16@lof per equation.

The robustness and accuracy of the spatial schamée asserted, a full convergence of
the residuals to machine accuracy is reached, t@esipe complex configuration of the
3" neighbour stencils in the refined zones showrigurd 11.

COCON T1.1 Transonic test case
Naca0012 Euler Mach 0.95 incidence 0° —&— E(Cx) Nxo —m—— E(Ht) NXO
= - h*4 0.003 —&— h*2
) 0.0025
o 0.002F "\ S
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i 0.0015F \ .\
4 F
i 0.001F
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1 PSS RTR S R
50

E(Ht)
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sqrt(ndof/eqn) sqrt(ndof/eqn)

Figure 12 Error on the drag (reference value from theditere is 0.1097978)
Relative error in total enthalpy (log scale) NACAO0012 transonic flow at Mach 0.95

Table 1. Results for computations on unstructured gridsdimatically refined for the elsA Hybrid solver)

Nb Nb triangles Cd E(Cd) E(Ht) Nit Mem
vertices (dof/eqn) (MO)
c2 1| 1352 | 2618 ( 53 | 0.1103989| 6.01b| 2.2510° | 3700 47
c2.2 | 2738 | 5338 ( 73 | 0.1098347| 3.710| 5.4010° | 5050 50
Cc2.3| 4092 | 8034 ( 9Y) | 0.1097869| 1.110| 55010 | 6050 56
C2 4 | 5640 | 11112 (105 | 0.1098049| 7.110| 2.6810° | 6300 78
C2.5 | 7146 | 14108 (119 | 0.1098021| 4.310| 3.70 1¢' 7500 99
C2. 6 | 10049 | 19888 (14) | 0.1098062| 8.410| 2.6110° | 8900 140
C2_7 | 14100 | 27959 (167 | 0.1098007| 291D | 1.5410° | 12500 195
C2.8 | 20000 | 39904 (269 | 0.1097984| 6.210| 1.1310' | 16200 275
C2.9 | 30000 | 59700 (243 | 0.1097971| 7.510| 1.07 10' | 19300 420

6 CONCLUSION

The state of the art in spatially High Order Conspiele CFD evolves rapidly [14]. The
interpolation and flux integration phases of the@®i¥cheme provide robustness and accuracy
on several types of coarse and optionally HO godsa wide range of Mach numbers.

Curved wall boundary conditions well adapted to tlceurrence of flow discontinuities
permit to enhance even further the quality of tesutts, on grids with low refinements that
spatially high-order methods should demonstratelasant.

With this objective of strong algorithm efficienoy coarser grids, the asymptotic spatial
order of the scheme becomes less salient.
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