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Abstract. We present a spatially High Order cell-centered Finite Volume method based on a 
WLSQ reconstruction of the conservative variables or the components of the flux density 
tensor [1]. These reconstructed polynomials are projected on the cell interfaces to compute the 
fluxes. The weight distribution in the WLSQ permits to obtain a stable scheme without the 
need for a posteriori limiting the higher order derivatives of the reconstructed fields. 

The face projected fields and their normal derivatives can then be associated with the most 
robust existing flux schemes [2], eventually dealing with discontinuous solutions for shock 
capturing.  

Accurate expressions also of the wall boundary conditions enable to reach high grid 
convergence indices for transonic and supersonic flow computations around wing profiles. 

The formulation could be extended to high order grids in a very CPU efficient way. 
 These novel features, in subsonic, transonic and supersonic situations, could be compared 

with the element-based spatially HO reference methods (DG, Flux Reconstruction, stabilized 
CG,…) and standard 2nd Order FV formulations, during the editions of the High Order CFD 
Workshop [3] and during Onera solver cross comparison projects. 

 
1    INTRODUCTION 

 
Stable and accurate flux integration methods on unstructured grids are needed for robust CFD 
solvers. In the context of cell-centered Finite Volume, the polynomial reconstruction of the 
fields of conserved or primitive variables over a wide source stencil by Least-Squares 
methods is the basis for a number of developments [3] [4] [5]. In the projection phase of the 
NXO numerical scheme, the reconstructed solution can be evaluated in a number of ways:  

• at nodal face integration points, where dual-valued conservative variables from left 
and right-biased stencils serve as an input for an approximate Riemann solver,  

• as a surface integral on these interfaces, for a single face evaluation of the fluxes 
from interface-averaged conservative variables, 

• as a volume average of the field on some target cell in an overset grid problem. 
This cell-centered Finite Volume method also makes use of an optional formulation where 

the reconstructed fields are not the conservative variables, but the components of the flux 
density tensor of each conservation equation. The flux tensor has a non-linear expression as 
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function of the conservative variables in all equations, except for the mass conservation. Its 
spatial reconstruction limits the overall asymptotic order of the scheme to 3, but it was shown 
in [1] that much higher grid convergence indices can be obtained with this scheme on grids of 
moderate refinement, and the entrance of the scheme into the asymptotic regime is obtained 
with a coefficient of the leading error term that is reduced by several orders of magnitude 
when compared to standard 2nd order FV methods. 

The computations presented here use the flux density tensor reconstruction algorithm up to 
the fifth order, associated to a face-centered stencil and stabilized by first-order and 
eventually a blend of 1st- and 3rd-order grid difference operators across the interface, as in the 
JST scheme [2].  

All coefficients of the linear combinations towards the interfaces are computed in the 
geometric preprocessor, they include an a priori stabilization feature that enhances the 
diagonal dominance of the overall scheme, by using fast decaying weights towards the 
periphery of the stencil, in the Weighted Least Square reconstruction. 

This scheme was applied on high order grids made available at the 3rd and 4th HO CFD 
workshops, for the shock-free cases of the Ringleb flow and a subsonic bump [6].   

Application examples dealing with supersonic and transonic flows around aerodynamic 
profiles are presented; they concern a Bow shock from a flow at Mach 4 encountering a flat 
plate with rounded edges, which is also a test case from the HO workshop, and Mach 0.8 and 
0.95 flows around a NACA0012 profile.  

For this last case the expression of the wall boundary condition was improved to 
interpolate within the wall stencils only over quantities that are more continuous across 
shocks. This enabled gains in accuracy in the wave drag exceeding 1 order of magnitude on 
the reference grids that were formerly used for studies with 2nd order FV solvers. 

2 MAIN FEATURES OF THE SCHEME 

2.1    High-order spatial integration of the fluxes over a curvilinear interface 
 

Achieving a high space order in the Navier-Stokes schemes should permit to reduce 
drastically the number of cells in a grid to reach a target accuracy. At the walls in particular, it 
cells with curved boundaries must be used to represent properly the wall geometry. 

With these grids that are still more refined in the wall normal direction in order to properly 
resolve the boundary layers, the curvature of the cell faces at the wall needs to be propagated 
inside the grid. A full formulation of the FV scheme on HO grids is found necessary, besides 
curved wall HO boundary conditions. In a first step, for the reconstruction itself, curvilinear 
integration is used for the volume integrals of the monomials that serve for the WLSQ. 

The HO fluxes integration is then expressed in the following way, by introducing the 

components hgf ,,  of the inviscid and diffusive flux density tensors and the unit normal 

vector ( )ZYX ,,νr varying across the interface: 
 

0
)()()( =

∂
−∂+

∂
−∂+

∂
−∂+

∂
∂

z

hh

y

gg

x

ff

t

W vivivi
  (1) 



Jean-Marie Le Gouez 

 3

After integration on a cell of volume Ω  enclosed in a discrete set of boundariesnΩ∂ , with 

the volume average of a field represented by an overbar and the surface average represented 
by an overhat, 
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    the natural inviscid and diffusive fluxes, dissiF ,

r

 the added 

artificial dissipation, computed from the first and/or third order grid difference across the 
interface and discussed in the next section.  
We compute in the preprocessor the array κ that relates the discrete fields in the stencil to 
the coefficients of the reconstructed polynomial [1]. Then we evaluate, component-wise and 
with the desired numerical accuracy, the face integral of the unit normal vector multiplied by 

the monomials of the base as  { }ijk
kji dSZYX

n

πυ rr
=∫
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     (3).  

The curvilinear flux integral is expressed as a linear combination over the stencil of the 
discrete components of the flux density tensor:  
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We need to store after the preprocessor, on each interface, the coefficients of the linear 

combinations γβα ,, , computed from the product of κ andπ
r

, to obtain at a low CPU cost 

the flux curvilinear integrals for each equation of the NS system at each iteration of the solver. 

2.2    Extension of the JST scheme at High Order on HO grids 
 

We concentrate here on the inviscid fluxes of the governing equations. The scheme used is a 
centered scheme close to the JST scheme [2], with natural inviscid fluxes and an artificial 
dissipation with a shock detector. The 5 conservation equations in 3D are written:  
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reconstructed and face projected normal fluxes in the cells of the left and right stencil. 
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ω  is the highest module of the eigenvalues of the flux Jacobian at the 

interface, computed from the stencil average of conservative variables, a  the speed of sound. 
The grid differences in the standard JST scheme are evaluated by a 2 point formula for the 

first difference and a 4 point formula for the third grid difference. The high order evaluations 
of the grid differences chosen here use the first and third normal derivatives of the 
reconstructed polynomials, which are polynomials in the coordinate normal to the interface, 
and of degrees k-1 and k-3.  

The coefficients of these polynomials are multiples of those of the direct reconstruction 

ones, combined with the components of the unit normal vector [ ]TZYX νννν = . All cells in 
the stencils are involved in the grid-normal difference formulas, which are linear 
interpolations over the whole stencil and extend naturally to arbitrary unstructured grids. 

2.3    Improved wall boundary condition for transonic applications 
 

A special processing is introduced in the stencils adjacent to the walls for transonic cases, 
in order to improve the quality of the reconstruction over the wall stencils containing the 
shock. In all wall stencils, we choose to reconstruct the spatial variation of the « lagrangian » 

fluxes, i.e. the projection of the flux density tensor components of each equation k on the unit 

vector in the direction of the velocity [ ]TwvuU =
r

. 
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These fields, computed in all the cells of the wall stencils as shown on figure 1, hold a 
higher continuity over the shocks than the conservative variables or the face-normal fluxes 
(wall-normal here) used for the standard reconstructions presented before. 

After computing through the “NXO extrapolation” the wall face average of the fieldskϕ , 

there remains, in order to apply the wall b.c., to extract the pressure from these. 
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Figure 1: Reconstruction of flux densities in the direction of the global face normal or the local velocity vectors 
 

The values kϕ are interpreted as the fluxes in the direction of the unit velocity vector at the 

wall ( )t
zyx ττττ ,,=r

. This vector is evaluated independently from the “NXO 

extrapolation” of the unit velocity vectors in the stencil; it is not imposed to be tangent to the 

wall. In order to solve for the wall pressure, this vector is also not imposed to be aligned with 

the wall velocity in the next equations (equation set (9) holds for any unit vector). 

The quantities kϕ  are related to the primitive variables by the following equations: 
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After eliminating thwvu ,,,,ρ from these 6 equations, we obtain an equation of second 

degree for the pressure: 
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This equation provides 2 roots that correspond respectively to a subsonic and a supersonic 

state. The selection between these is done from the direct extrapolation of the conservative 
variables to the wall to obtain the Mach number and express the compatibility relationship [6]. 

3 SHOCK-FREE VERIFICATION CASE OF A SMOOTH INVISCID  BUMP 
 

This 2D test case of a subsonic flow about a Gaussian shaped bump is provided by the High 
Order CFD workshop [7] with a series of 5 imposed quartic grids. 

It was computed with the curvilinear reconstruction and integration scheme of section 2.1. 
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Three different degrees for the (k-exact) polynomial representation of the flux density 
tensor where used. The degree of reconstruction reduces in the stencils close to the boundaries 
from the one imposed in the center of the domain. These levels of accuracy were: k=1, which 
is close to an unlimited and really 2D MUSCL-type interpolation, k=2.25 (k=2 for 80% of the 
stencils and k=3 for 20%), k=3.15 (3 for 90% of the stencils and 4 for 10%). 

The notion of “really 2D” refers to the fact that the reconstruction at any k order is a 
unique polynomial in all space coordinates over a cell-centered stencil, and the evaluation of 
this same polynomial is done at all the interfaces of the cell for upwind or centered schemes.  
 

 
 

Figure 2: Field of density for the run on grid4: 3072 cells (= number of dof/equation) 
 

The density field computed on grid 4 is shown on figure 2. Figure 3 presents the L2 norm of 
the entropy error over the grids, as a function of an average cell size. The grid convergence 
index reaches 4.1 for the k=3+ scheme, which is at par with the majority of the element-based 
solvers which contributed to this test case.  
 

 
 

Figure 3: L2-norm of entropy error over the grids 

4 SUPERSONIC VERIFICATION CASE FROM THE 5 TH HO CFD WORKSHOP  [8] 
(BOW SHOCK AT MACH 4) 

This test case was to be computed on the 5 provided structured grids [8], adapted to the 
bow shock position for a reference 2nd order FV solver. In order to calibrate the amount of 
artificial dissipation and to compare it with the JST scheme [2], the scheme of section 2.2 was 
used on 1D stencils extending along the grid line normal to the interface. The only monomials 
of the base are powers of the normal coordinate.  

The flow field and the coefficients of artificial dissipation are illustrated on figure 4. 
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The preprocessing is done successively with cell stencils of 5, 7 and 9 stencils enabling k-
exact reconstructions from k2 to k5. The exact cell node coordinates are used, so varying size 
of the cells in the stencil is accounted for. The corresponding face stencils used for the 
artificial dissipation comprise 6, 8 or 10 cells, and enable to reconstruct k3 to k5 polynomials.  

 

 
 

Figure 4: Fields of Mach number and coefficients of 2nd order and 4th order artificial dissipation (eqn. 7). 
Bow Shock at Mach 4, grid 2: 22098 dof/eqn 

 

The main point that allows a higher accuracy is the stencil-reconstruction of face normal 
fluxes rather than conservative variables. These fluxes are continuous over the stencil across 
normal shocks when the grid is fitted to them. 
 

  
 

Figure 5 Bow shock: Density (left) and total enthalpy (right) on the symmetry axis 
Zooms at the stagnation point and at the shock region  
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On figure 5 is presented the evolution of the solution along the stagnation line, for the 
density and the total enthalpy. These illustrate the sharpness of the density jump capture and 
the convergence of the solution at the stagnation point.  

The total enthalpy only departs from its reference value in 2 cells across the shock.  
The relative error at the stagnation point for this quantity is of the order of 10-6 on all grids 

except for the coarsest one. 

5 TRANSONIC VERIFICATION CASE        (MACH 0.8 AND MACH 0.95 FLOWS 
AROUND A NACA0012 AIRFOIL) 

Structured and unstructured grids are used. The NACA0012 profile was extended slightly 
after x=1 until it closes without modifying its equation. The NACA0012 profile was extended 
slightly after x=1 until it closes without modifying its equation. 

The flow about a NACA0012 airfoil at Mach 0.8 without incidence is computed on a series 
of structured O-grids. These high quality grids that are not refined at the shock locations have 
been created by A. Jameson and J. Vassberg for their projects, in particular [10]. They were 
made available by them to ONERA for the projects of D. Destarac and his co-workers [11]. 
We acknowledge here their support and express our thanks.  

These structured grids are interpreted as unstructured by the solver. Three successive 
options of the NXO scheme have been used, all with the reconstruction of normal components 
of the flux density tensor at all faces but the boundaries: 

a/ The expression on linear grids, with wall slip boundary conditions processed by  the  
HO extrapolation in the wall stencil of conservative variables, 
b/ The same scheme at inner faces, and a wall boundary condition based on the 
reconstruction / extrapolation of “lagrangian” fluxes in the wall stencils and resolution 
of a second degree equation for pressure at the wall (section 2.3, eqn. 10), 
c/ Same as b/, but with also a high order geometric representation of the wall face, as a 
quartic Lagrange polynomial in space, obtained by adding 3 supplementary definition 
points for the profile at their exact coordinates within each wall face.  

 
Runs a/ were done on a series of grids of sizes from 128*128 to 1024*1024, which had 

previously been computed by a 2nd order cell-centred FV code at Onera. 
The reconstruction k4 on a full 2d base was used in the field stencils, and k3 in the wall 

ones (comprising 25 cells in the field and 16 at the wall, see figure 1). 
The field of absolute error on the total enthalpy field is plotted on figure 6 (reference value 

is 2.82). It is lower in the field than at the wall, with an error spot at the shock location. 
We present on figure 7, as squares for the formulation a/, the absolute error in drag with a 

reference value Cx = 0.0083409 obtained from elsA with the JST scheme, and the relative 

error in total enthalpy at the wall, i.e. the contour integral along the profile of
∞

∞−

,

,

t

tt

H

HH
.  

The grid convergence index for the drag error is a little better than 3.5, while the one for 
the total enthalpy error is 1. The NXO solution on the finest grid is 0.00834083. 
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Figure 6: Field of total enthalpy absolute error for a grid 256*128 (tangential / normal)   ∞,tH =2.82 

 

 
 

Figure 7: Error indices as function of the square root of the dof/eqn (average number of cells per direction) 
NXO results a/: green squares, c/: blue and black curves, grids 181*91, 256*128, 362*181, 512*256 of fig. 9 

 

The solution with the most accurate wall boundary condition c/ is shown on figure 8.  
We have plotted here, along both sides of the wall and with the cell index in abscissa, the 2 

solutions of the equation of second degree for the wall pressure in green and blue, together 
with the one that was retained, in red, based on the evaluation of the Mach number. 

The wall faces are numbered in clockwise order from the trailing edge. The stagnation 
point at center (i=128) is in the low subsonic zone, with a corresponding supersonic solution 
close to 0, then as we move downstream pressure decreases and the flow becomes supersonic. 

It is noticeable that the pressure gradient along the wall is continuous where the flow 
becomes supersonic (i=105 and i=145), although we are changing the choice of the root of the 
second degree equation. 

Then at the shock we switch again roots, without excessive wiggles near the shock. 
The solution improvement, in drag and total enthalpy, is plotted on figure 7 as triangles 

and circles. 
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Figure 8: Solutions of the equation of 2nd  degree. Wall pressure function of wall face index run c/ 256*128.  
Retained solution is in red; zoom at the shock location 

 

For the curve with black circles, drag computed with the model c/ is extrapolated for an 
infinite fine grid to Cx*= 0.0083417 rather than the elsA value of 0.0083409 used before. The 
convergence rate for drag is 3.7, while the total enthalpy error stalls. 

The total enthalpy field of run c/, on a grid of square cells, is plotted on figure 9a, with now 
a more continuous level of error inside the domain and at the wall. 

Finally we present on figures 9b the error traces of the relative total enthalpy error, in log-
scale, along the wall as function of the cell indices, for the 3 runs on the grid of figure 9a 
comprising 256*128 cells. Run a/ is in red, run b/ in green, and run c/ in blue. 

The error levels of b/ and c/ are lower, except in the supersonic zone, between the cell 
faces 150 and 185, where the error in the initial model a/ drops near 10-6. The b/ and c/ models 
are much more accurate across the shock and downstream it. The formulation with higher 
order geometry representation only improves the streamwise regularity of the solution.  

The curvilinear integral of the relative error on total enthalpy on this grid is divided by a 
factor 3 from model a/ to model c/, 1.1 10

-3
 to 3.5 10

-4
. 

 

  
 

Figure 9:  Run c/ 256*128. Relative error on total enthalpy in the field and at the wall: runs a,b, c/ 256*128 
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A second series of runs was performed on the same airfoil at Mach 0.95, with fully 

unstructured grids and stencils made of triangles. The formulation a/ was used, since the flow 
is supersonic along the wall, from 6% of chord, and gets subsonic way downwind. 

The meshes used here stem from an Onera project with the hybrid (structured/ 
unstructured) version of elsA, where a goal-oriented grid adaptation method using the adjoint 
of the unstructured solver was developed [12]-[13]. 

 

 
 

Figure 10: Pressure field for the NACA0012 transonic flow at Mach 0.95. Grid C2_7 27959 dof/eqn 
 

Although the spatial schemes of elsA and NXO on unstructured grids strongly differ, the 
grid adaptation algorithm is also driven by the physics of the flow and the error decreases fast 
with the grid size. Figure 10 shows the grid refinement zones related to global flow features. 
 

 
 

Figure 11: Grid C2_7. Relative total enthalpy error (log scale), NACA0012 transonic flow at Mach 0.95 
Representation of some stencils near the airfoil downstream edge 

 
The error field on figure 11 takes low levels along the profile. The errors as function of the 

mesh size are reported in table 1 and plotted on figure 12. High grid convergence rates are 
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evidenced on mid-size grids, owing to the grid adaptation algorithm. Errors in the wave drag 
below 10-5 are obtained with only 1002 dof per equation. 

The robustness and accuracy of the spatial scheme can be asserted, a full convergence of 
the residuals to machine accuracy is reached, despite the complex configuration of the 
3rd_neighbour stencils in the refined zones shown on figure 11. 

 

 
 

Figure 12: Error on the drag (reference value from the literature is 0.1097978)  
Relative error in total enthalpy (log scale)        NACA0012 transonic flow at Mach 0.95 

 
Table 1: Results for computations on unstructured grids (automatically refined for the elsA Hybrid solver) 

 

 Nb 
vertices 

Nb triangles 
(dof/eqn) 

Cd E(Cd) E(Ht) Nit Mem 
(MO) 

C2_1 1352 2618  (  512) 0.1103989 6.0 10-4 2.25 10-3 3700 47 
C2_2 2738 5338  (  732) 0.1098347 3.7 10-5 5.40 10-4 5050 50 
C2_3 4092 8034  (  902) 0.1097869 1.1 10-5 5.50 10-4 6050 56 
C2_4 5640 11112 (1052) 0.1098049 7.1 10-6 2.68 10-4 6300 78 
C2_5 7146 14108 (1192) 0.1098021 4.3 10-6 3.70 10-4 7500 99 
C2_6 10049 19888 (1412) 0.1098062 8.4 10-6 2.61 10-4 8900 140 
C2_7 14100 27959 (1672) 0.1098007 2.9 10-6 1.54 10-4 12500 195 
C2_8 20000 39904 (2002) 0.1097984 6.2 10-7 1.13 10-4 16200 275 
C2_9 30000 59700 (2442) 0.1097971 7.5 10-7 1.07 10-4 19300 420 

6   CONCLUSION                                                             
 

The state of the art in spatially High Order Compressible CFD evolves rapidly [14]. The 
interpolation and flux integration phases of the NXO scheme provide robustness and accuracy 
on several types of coarse and optionally HO grids, on a wide range of Mach numbers.  

Curved wall boundary conditions well adapted to the occurrence of flow discontinuities 
permit to enhance even further the quality of the results, on grids with low refinements that 
spatially high-order methods should demonstrate as relevant.  

With this objective of strong algorithm efficiency on coarser grids, the asymptotic spatial 
order of the scheme becomes less salient. 
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